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Abstract

We introduce a novel, fully nonparametric estimation framework to process data
from survey-based environmental valuation with a binary, referendum-style choice ques-
tion, traditionally referred to as Contingent Valuation. Our approach combines the
construction of choice probabilities via Random Forests (RFs) with welfare predictions
via common distribution-free estimators. While popular as back-of-envelope alterna-
tives to parametric estimation, these distribution-free methods are poorly suited for
the incorporation of observation-specific heterogeneity. In contrast, our Random For-
est Non-Parametric (RFNP) approach produces willingness-to-pay (WTP) estimates
at the individual level, conditioned on a potentially large set of explanatory variables.
Furthermore, our predicted choice probabilities as well as welfare estimates come with
well-defined asymptotic properties. Using simulated data, we find that the RFNP esti-
mator is robust to nonlinearities in the WTP function and can compete with correctly
specified parametric models in terms of asymptotic efficiency. In our empirical appli-
cation within the context of biodiversity enhancements on open land in the United
Kingdom, we show that the RFNP is immune to negative WTP predictions by con-
struction, and produces reasonable and efficient lower bound estimates for individual
and sample-aggregated WTP. It can also generate welfare predictions that allow for
long tails in individual WTP, without having to impose this feature on all observations.
Our framework is well-suited for numerous extension, and readily implemented with
existing software packages.
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Introduction

The economic valuation of environmental amenities and services often requires survey-based,

or Stated Preferences (SP) approaches to estimate societal benefits of planned policy inter-

ventions. Typically, respondents are asked to decide between current conditions, generally

referred to as Status Quo (SQ), and one or more hypothetical policy scenarios that stipu-

late improved environmental quality or amenities, in exchange for a (hypothetically) binding

payment (“bid”) (Champ et al., 2017; Johnston et al., 2017). As originally recommended

by a “blue ribbon” panel of prominent economists convened by the National Oceanic and

Atmospheric Agency (NOAA) in the wake of the 1989 Exxon Valdez oil spill, a single, bi-

nary choice question involving the SQ and one policy alternative is widely considered the

most robust elicitation approach in SP research, in terms of minimizing strategic response

behavior and other undesirable survey design effects that could bias welfare estimates (Na-

tional Oceanic and Atmospheric Administration, 1993; Freeman et al., 2014; Champ et al.,

2017; Johnston et al., 2017; Phaneuf and Requate, 2017). This single choice, referendum-

style format is generally referred to as “dichotomous choice contingent valuation.” We will

henceforth adopt the common abbreviation of “Contingent Valuation (CV).”

The vast majority of CV applications to date have been anchored in a Random Util-

ity Modeling (RUM) framework, typically departing from a parameterized indirect utility

function (IUF) paired with an additive stochastic error term (hence “random utility”) with

a specified statistical distribution, such as the Logit or variants thereof (Hanemann, 1984;

Freeman et al., 2014; Champ et al., 2017; Phaneuf and Requate, 2017). Given the assumed

error distribution, choice probabilities, say the probability of an observed YES response

to the proposed policy, can then be expressed as an individual-specific evaluation of a cu-

mulative distribution function (cdf). These cdf terms, in turn, then feed into a likelihood

function that yields estimates of the preference parameters. In a final step, these param-

eter estimates are then combined with environmental quality attributes and (optionally)

respondent characteristics to generate individual-specific welfare estimates, usually referred

to as willingness-to-pay (WTP).
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As noted in numerous articles that consider CV for the estimation of WTP, economic

theory provides limited guidance on the form of the IUF and / or the distribution of the

stochastic RUM component. In turn, mis-specification of either of both of these elements

can lead to biased and inconsistent welfare estimates (e.g. Li, 1996; Creel and Loomis,

1997; Chen and Randall, 1997; Haab and McConnell, 2003; Crooker and Herriges, 2004;

Watanabe and Asano, 2009; Watanabe, 2010; Lewis et al., 2024). To mitigate against mis-

specification risks, several semi- and nonparametric estimators have been proposed in the

existing literature.

The first set of these contributions focuses exclusively on relaxing distributional assump-

tions for the stochastic RUM component. For example, Li (1996) maintains an explicit form

of the IUF, but applies Cosslett (1983)’s distribution-free Maximum Likelihood Estimation

(MLE) estimator to recover utility parameters and construct WTP estimates. Similarly,

Zapata and Carpio (2024)’s Semiparametric Iterated Linear Model (SPILM) assumes a para-

metric specification for the expected WTP function while using a nonparametric iterated

procedure to estimate the error density. Watanabe and Asano (2009), in turn, completely

abstract from any explicit IUF or WTP function, and center their approach to derive mean

WTP around an assumed bid distribution.

A second set of papers relax both assumptions on IUF and error distribution, but focus

squarely on the estimation of mean WTP for the underlying population without consider-

ation of any explanatory variables. This includes the nonparametric Turnbull (1976) and

Kriström (1980) estimators discussed in Haab and McConnell (1997), Haab and McConnell

(2003) and Lewis et al. (2024), the aforementioned linear projection estimator of Watan-

abe and Asano (2009), and the related, but projection-free estimator of Watanabe (2010).

However, as argued in Creel and Loomis (1997) and Watanabe (2010), it is often important

to derive conditional WTP estimates, given an explicit set of quality changes and stake-

holder attributes. This need arises, for example, in the context of Benefit Transfer (BT),

where estimates from existing studies are used to predict benefits of a planned policy in-

tervention elsewhere (e.g. Champ et al., 2017; Johnston et al., 2015; Moeltner et al., 2019,

2023; Johnston and Moeltner, 2024). Capturing individual heterogeneity is also important
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when the distributional impact of interventions are of interest, as is increasingly the case in

the environmental policy arena in light of growing environmental justice concerns (Banzhaf

et al., 2019b,a; Andarge et al., 2024).

In this study, we relax both IUF and error specification assumptions while still allowing

for the estimation of individual WTP for any desired combination of explanatory variables.

There exist a handful of CV contributions that share the same objective, though none of

them have become mainstream tools in the CV / SP arena. Creel and Loomis’s (1997)

Semi-Nonparametric Distribution Free (SNPDF) estimator utilizes a Fourier transform of

the IUF in combination with an invertible error cdf to derive conditional WTP estimates.

While their error distribution is still explicit (they use the Logistic for simplicity), it can

be any invertible density. Chen and Randall (1997) take a similar approach, but depart

directly from a WTP function, and approximate the error distribution with another series

estimator. However, as also discussed in Crooker and Herriges (2004), the Fourier transform

still requires “manual” specification of index vectors that are supposed to capture all possible

elementary combinations of explanatory variables. This can become cumbersome for a high-

dimensional covariate space, as is the case for our application. Furthermore, both Creel and

Loomis’s (1997) and Chen and Randall’s (1997) method require MLE to estimate model

parameters, and numerical integration to recover WTP.

Crooker and Herriges (2004) offer an alternative approach based on the Generalized

Maximum Entropy (GME) estimator. While avoiding any type of series approximation, this

method still requires the explicit specification of moment conditions that themselves include

stochastic components, for which distributional assumptions have to be made. The model,

if cast in its dual form, can be estimated via standard MLE (Crooker and Herriges, 2004).

Watanabe (2010) builds on Watanabe and Asano (2009)’s Linear Projection estimator, but

shows how covariates can be preserved inWTP construction. This approach still requires the

linearity assumption for the projection step, and an explicit bid distribution. Moreover, this

bid distribution must include the full support of WTP, which is unobserved by definition.

Zapata and Carpio (2024) propose a Nonparametric Iterated Additive Model (NIAM). It

builds on their SPILM model mentioned above, but specifies the conditional WTP via a
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nonparametric additive model. Naturally, this approach requires choice of bandwidth and

kernel functions, which have to be determined via cross-validation methods. This can be

computationally burdensome with a large set of covariates, as is the default assumption

in our methodological framework. Furthermore, their iterative optimization algorithm is

rather complex, requiring eight individual estimation steps, while our proposed estimator

can be implemented in two simple stages, largely building on existing R packages.

In this work we propose a novel, fully nonparametric strategy to estimate individual-

specific WTP from CV data. Our method does not require any type of optimization or

numerical approximation, can accommodate a large set of explanatory variables (potentially

larger than the sample size), requires minimal tuning, and can be readily implemented

in R. It builds on one of the most powerful and popular Machine Learning (ML) tools,

Random Forests (RFs). In essence, we use an RF to predict acceptance probabilities for

each respondent, and for each bid level offered in the survey to the sample at large (even

though in actuality each survey taker only receives a single bid, as prescribed by the standard

CV method). For each individual we then process the paired vectors of bid values and YES-

probabilities using variants of the Turnbull (1976) and Kriström (1980) procedures. This, in

turn, produces observation-specific welfare estimates, along with asymptotically guaranteed

standard errors and confidence intervals.

We use both simulated data and an empirical application on biodiversity enhancements

on open lands in the United Kingdom (UK) to showcase our framework. In the simulation

exercise, we find that the RFNP estimator is robust to even severe departures from linearity

in the WTP function, and generates asymptotic standard errors for WTP predictions that

are of the same order of magnitude as those produced by a correctly specified Logit model.

The RFNP out-competes the Logit in accuracy and coverage when we introduce nonlinear-

ities in WTP. For our empirical application, we show that the RFNP, when combined with

the Turnbull distribution-free estimator, generates reasonable and accurate lower bound

estimates for individual and aggregate WTP. Implementing the RFNP with an adjusted

Kriström component, as recently suggested by Lewis et al. (2024), allows for the modeling

of longer tails for individual WTP, without having to impose this feature for the entire sam-
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ple. As an added bonus, all of our RFNP estimators are immune to (nonsensical) negative

WTP estimates, which we find to be a problem for their parametric counterpart.

To our best knowledge, this is the first study that applies RFs in the context of CV elic-

itation (or, for that matter, any SP approach), and the first that utilizes the Turnbull and

Kriström (1980) estimators to generate welfare estimates at an individual level. Our frame-

work is easy and fast to implement, and thus offers an attractive alternative to parametric

modeling in any CV setting.

Modeling

In this study we compare the performance of a traditional parameterized Logit model and

our RFNP estimator. We start by introducing the RUM framework for the Logit model.

Consider the simple random utility model for individual i for status quo (subscript 0) and

policy (subscript 1) conditions:

Ũ∗
0i = x′

0iβ
∗ + γmi + ϵ̃∗0i,

Ũ∗
1i = x′

1iβ
∗ + γ (mi − Pi) + ϵ̃∗1i

ϵ̃ji ∼ EV (0, 1) , j = 1, 2

(1)

where k-dimensional regressor vector x comprises quality indicators, possibly interacted

with household characteristics, mi is income, and error term ϵ̃∗ captures unobservables. If

the intervention scenario is chosen, payment Pi is subtracted from income, as shown in the

second equation. By standard convention, the error follows a standard Extreme Value (EV)

distribution with mode zero and unit scale.

Taking the difference between utilities yields

U∗
i = Ũ∗

1i − Ũ∗
0i = (x1i − x0i)

′ β∗ − γPi + ϵ∗i where

ϵ∗i = ϵ̃∗si − ϵ̃∗0i ∼ LOG (0, 1) ,

(2)

where LOG (0, 1) denotes the stadard logistic distribution with a mean of zero and a
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scale of one. To facilitate model comparison we convert the utility-differenced model into

willingness-to-pay (WTP), or “surplus”, space (Train, 2009; Cohen et al., 2016; Johnston

et al., 2023). This requires dividing (2) by the price coefficient γ, yielding

Ui =
U∗
i

γ
= x′

iβ − Pi + ϵi where

xi = (x1i − x0i) , β =
β∗

γ
and

ϵi =
ϵ∗i
γ

∼ LOG
(
0, γ−1

) (3)

Adjusted utility Ui now has the interpretation of “surplus,” defined as the difference between

the full WTP to obtain the policy scenario (given as w∗
i = x′

iβ+ϵi) and the required payment

Pi. The probability of an observed YES (= vote for the policy scenario) and NO response,

respectively, can then be written as:

p (Y ES) = p (yi = 1) = p (w∗
i > Pi) =(

1 + exp
(
γ ∗

(
Pi − x′

iβ
)))−1

p (NO) = p (yi = 0) = p (w∗
i < Pi) =(

1 + exp
(
γ ∗

(
x′
iβ − Pi

)))−1
,

(4)

where yi is the binary (1=YES, 0=NO) choice indicator collected in the survey. Given a

sample of i = 1 . . . n observations, the model is estimated via standard Maximum Likelihood

(MLE) procedures (e.g Cameron and Trivedi, 2007; Greene, 2012).

Random Forests

Random Forests were first introduced to the ML literature by Breiman (2001). They have

proven themselves as a powerful and effective prediction tool in many applications (Hastie

et al., 2017; Harding and Lamarche, 2021; Storm et al., 2020; Greenwell, 2022). Advantages

over other methods include the ability to detect highly nonlinear relationships, robustness to

non-normality and outliers, algorithmic treatment of missing data, and limited requirements

in terms of pre-processing or tuning. They are also less computationally demanding than
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alternative ML approaches such as Neural Networks (Fernández-Delgado et al., 2014). In

the realm of environmental and resource economics at large, there are only a handful of

empirical studies that have used RFs. Most of those focus on the estimation of causal

treatment effects in the context of policy evaluation (Miller, 2020; Harding and Lamarche,

2021; Stetter et al., 2022; Liu et al., 2023; Valente, 2023; Prest et al., 2023; Mink et al.,

2024). To our best knowledge, only Hino et al. (2018) exploit the predictive strength of RFs,

within the context of detecting industrial water pollution violations. Recently, Johnston and

Moeltner (2024) developed an RF-based framework for meta-regression modeling and BT.

We are not aware of any published or unpublished study that uses RFs for CV modeling,

or, for that matter, in any valuation context based on SP elicitation.

The conceptual starting point for the RF model is a direct relationship between observed

choice yi and all available explanatory variables. Combining covariates xi and bid Pi into

single vector zi to simplify notation, it can be generically written as:

yi = g (zi) + ϵi, with

E (ϵi|zi) = 0,

(5)

where g (.) is an unspecified nonparametric function, and the only assumption required for

the error term is a conditional expectation of zero, mirroring the equivalent assumption for

the Logit. As is evident from (5) the model directly specifies observed choice yi as outcome

of interest. Covariates, or “features” zi typically enter in differenced form for variables that

change between SQ and policy, such as environmental quality, but can otherwise be used in

their raw form, such as household characteristics. Furthermore, ordinal variables, such as

Likert scores for attitudinal questions, can be fed into the model without pre-processing.

As described in Hastie et al. (2017) and Greenwell (2022), RFs build on a large number

of underlying “trees.” Each tree, in turn, is constructed using a bootstrapped sub-sample

of the full data. The tree is then “grown” by repeatedly and sequentially splitting the data.

The splitting point is a specific threshold value within one of the explanatory variables, e.g.

“number of children > 2 vs. ≤ 2.” The variable that produces the splitting point, in turn, is
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chosen from a random subset of all available covariates. Using a specific optimization rule,

such as maximum reduction in Mean Squared Error (MSE) (as applied in our case), the RF

algorithm then searches over this subset and all possible splitting points contained therein

to find the optimal way to separate the data. The splitting process ends when no further

reduction in MSE can be achieved and / or minimum sample sizes are reached in what

is referred to as “terminal leaves.” Each of these leaves then contains a small sub-set of

observations, typically three to ten. The placement into leaves of actual sample observations

is thus purely determined by covariates zi.

Prediction of choice probabilities

Both the Logit and RF are suitable for predicting the probability of a YES response for

an actual sample point or a new observation for which there is no observed outcome in the

data. We will maintain subscript i for the first case, and subscript p (for “prediction”) for

the general situation that captures both within and out-of-sample scenarios.

For the Logit, the predicted probability of a YES vote for an observation with explana-

tory features xp facing bid Pb, b = 1 . . . B, can be constructed via:

p (Y ES|xp, Pb) = ŷp,L =
(
1 + exp

(
γ̂ ∗

(
Pb − x′

pβ̂
)))−1

(6)

where subscript L denotes the Logit model, and γ̂ and β̂ are the MLE estimates of the

corresponding parameters in (4).

For the RF, tree-specific predictions for a point with features zp = {xp, Pb} are generated

by averaging outcomes yi for sample observations that share the same leaf as zp. The final

prediction of a YES-probability, ŷp,F , with F denoting “Forest,” is then derived by averaging

these values over all trees in the forest. This can be formally written as (Athey and Wager,
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2019; Friedberg et al., 2021; Tibshirani et al., 2024b; Johnston and Moeltner, 2024):

ŷp,F |zp,X,y =
1

B

B∑
b=1

1

|Lb (zp) |

n∑
i=1

yi I (zi ∈ Lb (zp)) =

n∑
i=1

yi
1

B

B∑
b=1

I (zi ∈ Lb (zp))

|Lb (zp) |
=

n∑
i=1

αi (zp,X) yi,

(7)

where X and y denote, respectively, the covariate matrix and outcome vector for the full

sample, Lb (zp) is the terminal leaf of tree b that contains policy point zp, |Lb (zp) | denotes

the number of original observations that were assigned to leaf Lb (zp), and I (.) is an indicator

function. As discussed in Johnston and Moeltner (2024) the first line in (7) performs the

averaging over trees of tree-specific averages of outcomes within the target leaf. The second

line switches summation, and the third expresses 1
B

∑B
b=1

I(zi∈Lb(zp))
|Lb(zp)| as observation-specific

weight that determines the influence each actual outcome yi has in the construction of final

prediction ŷp. These weights are fully nonparametric and data-driven, and adjust for each

new policy point zp. For this reason, Wager and Athey (2018) and Athey et al. (2019) refer

to RF-based predictions as an “adaptive kernel method.”

As shown in Wager and Athey (2018) and Athey et al. (2019) estimates flowing from

RFs are asymptotically normal and consistent if forests are built following the “honesty”

principle in tree construction. It requires using different portions of the data to, respectively,

grow and populate a given tree (i.e. fill its leaves). We apply this honesty principle for all

our RF models.

WTP predictions

For the Logit model a prediction of expected WTP (i.e. holding error noise at zero) for a

specific combination of explanatory variables xp can be obtained in straightforward fashion
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via:1

ŵp,L = x′
pβ̂, (8)

where ˆwp,L is predicted WTP, in dollars, and β̂ is the MLE estimate of the scale-adjusted

coefficients β in (3) and (4).

For the RF, we proceed in two steps. First, we note that forests are well-designed

to produce choice probabilities for an individual with any arbitrary mix of features zp =

{xp, Pb}. This includes the case where quality and household characteristics xp remain

constant, but bid Pb takes on different levels. In essence, this mimics the ideal survey

situation where each respondent answers sequentially and independently a set of choice

questions for identical quality scenarios, but with bid varying over all bid levels represented

in the survey, say Pb, b = 1 . . . B. In an RF predictive framework this is achieved by

simply “replicating” each individual’s (transposed) feature vector xp B times, and adding

a vector of sequentially increasing bids as a separate column. The resulting n × B by

k + 1 “augmented” feature matrix is then fed into the original forest to obtain B choice

predictions per individual, one for each bid level.2

In the second step, we then employ the nonparametric methods discussed in Haab and

McConnell (1997) and Haab and McConnell (2003), ch.3, to convert the B voting predictions

into expected WTP. Specifically, we consider the lower-bound Turnbull estimator (Tb.low),

the upper-bound Turnbull (Tb.up), and the linear interpolation estimator originally pro-

posed by Kriström (1990) (K). Denoting the predicted probability of a YES response to

bid Pb for an individual with features xp as ŷp,b, and the corresponding probability of a NO

response as p̂p,b = 1 − ŷp,b, the TB.low (henceforth captured with subscript “l”) estimator

for expected WTP flowing from the RF can be expressed as (Haab and McConnell, 2003):

ŵp,l =

B∑
b=0

Pb (p̂p,b+1 − p̂p,b) , (9)

1We will henceforth use the terms “expected WTP” and “WTP” interchangeably. Both refer to the
expectation over the stochastic component of a given estimator.

2Naturally, any arbitrary bid level not offered to anybody in the actual survey could be used to generate
predictions. Here we limit ourselves to actual bids featured in the questionnaire to allow for a more even
comparison with the Logit model.
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where Pb, b = 1 . . . B are the bids actually offered in the survey (to the sample at large),

and lower-bound bid P0 and corresponding NO-probability p̂p,0 are set to zero and one,

respectively (following the standard assumption that nobody would reject the policy sce-

nario if it came at no cost). Equation (9) also requires a value for the term p̂p,B+1, which is

set to one by convention. This can be understood as the NO probability to a hypothetical

“cut-off” bid PB+1, i.e. the price point at which the individual under consideration would

decline the policy scenario with 100% probability. As is evident from (9), and discussed in

Haab and McConnell (1997) and Haab and McConnell (2003), an advantage of the Tb.low

compared to other nonparametric WTP estimators (including Tb.up and K) is that this

cut-off point can remain unspecified. As indicated by (9) estimated WTP ŵp,l can be inter-

preted as the expectation of a discrete random variable with support points Pb, b = 0 . . . B

and corresponding point masses p̂p,b+1 − p̂p,b.
3 This can also be seen as an approximation

of a continuous distribution for WTP, where the entire probability mass for the interval

Pb+1 − Pb is assigned to the lower of the two threshold bids. For this reason the Tb.low

constitutes by construction a lower-bound estimate of expected WTP. Table A1 and the

top panel of Figure A1 in the online appendix give a stylized example.

The Tb.up (henceforth denoted by subscript “u”) estimator for expected WTP, in turn,

is derived as (Haab and McConnell, 2003):

ŵp,u =
B∑
b=0

Pb+1 (p̂p,b+1 − p̂p,b) , (10)

In this case, an arbitrary cut-off bid PB+1 needs to be chosen by the analyst. Compared

to the Tb.low, all probability masses are then shifted to the right by one bid level for

the construction of expected WTP ŵp,u. This situation is depicted in the bottom panel

of Figure A1 in the online appendix, with a corresponding numerical example shown in

Table A1. Thinking again in terms of a continuous underlying distribution of WTP, the

Tb.up estimate is, by construction, an upper bound for the true expectation, conditional

on knowing PB+1.

3It can be easily verified mathematically, and empirically from online appendix Table A2, that these
point probabilities add to one, as required.
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The third nonparameteric WTP estimator we consider was originally suggested by

Kriström (1990), and has since been employed in several empirical valuation studies (e.g.

Ready and Hu, 1995; Creel and Loomis, 1997; Haab and McConnell, 1997; Richardson

and Lewis, 2022; Lewis et al., 2024). Instead of assigning point-mass probabilities to each

bid level, the K estimator approximates WTP density between bids via linear interpolation.

This is shown in Figure A2 in the online appendix, with a corresponding numerical example

given in Table A2. Mathematically, the K estimate for expected WTP (henceforth denoted

by subscript “k”) can be expressed as (Kriström, 1990; Haab and McConnell, 2003):

ŵp,k =
B∑
b=0

(Pb+1 − Pb)
(
ŷp,b+1 +

1
2 (ŷp,b − ŷp,b+1)

)
, (11)

where, as previously noted, ŷp,b is the estimated probability of a YES response for an

individual with feature vector xp, facing bid Pb.

As discussed in detail in Haab and McConnell (2003), all three nonparametric esti-

mators assume ex ante that YES-probabilities are monotonically decreasing over bids (or,

conversely, NO-probabilities are increasing with bid levels). If this monotonicity is violated,

a smoothing procedure needs to be applied that drops bids with non-conforming associated

NO or YES probabilities. The standard formula as given in (9) to (11) can then be applied

to the remaining bid levels and corresponding probabilities. We apply a monotonicity check

and, if required, a smoothing adjustment for all individuals and models in our analysis, as

discussed below in more detail.

To date, the Turnbull and Kriström estimators have primarily been employed to derive

a single WTP estimate for the sample at large, using sample proportion of NO or YES

responses to a given bid in lieu of our estimated individual probabilities. In essence, we

generalize this method by applying it at the individual level, obtaining a full set of n WTP

predictions for the actual sample, and “personalized” WTP estimates for any desired com-

position of quality and household characteristics in xp. As mentioned above, and discussed

in Haab and McConnell (2003), the traditional Tb and K estimators have only very limited

ability to incorporate any form of observed heterogeneity, requiring splitting the data into
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arbitrary sub-groups and applying the proportion-based estimator to each group. In stark

contrast, our approach produces heterogeneous WTP estimates at the individual level by

default.

Choice of cut-off bid

As is clear from the discussion above, both the Tb.up and K estimator require the ad-hoc

specification of a cut-off bid PB+1. In our case, this value has to be selected or empirically

constructed for each individual for which a WTP prediction is sought. For our simulation

exercise below, where we know the actual underlying distribution of WTP for the sample

at large, we can mitigate against poor choices of PB+1 by setting up the ladder of “actual”

bids such that only a very small proportion of individuals chooses the policy option at the

highest administered level B. In other words, for most simulated “respondents” the highest

bid offered in our hypothetical survey would be a reasonable (and observed) cut-off value

(see also Glenk et al., 2024). For the remaining cases we select a common PB+1 near the

maximum “observed” WTP.

The situation is less clear-cut for our empirical application, where a considerable share

of the sample still votes for the policy option at the highest offered bid, and actual WTP

is unknown by default. Here we apply two variants of the K estimator. The first version

simply truncates a given individual’s WTP distribution at the highest observed bid B. This

approach is referred to as the “truncated Kriström” estimator (K.tr) in Lewis et al. (2024),

and we will adopt this label for our application. As is the case for the Tb.low, the K.tr

will produce an expected WTP estimate that is biased downward, but to a lesser degree

than for the Tb.l, given its linear interpolation between all interior bids when constructing

the estimate for expected WTP (Lewis et al., 2024). It can thus be interpreted as a less

conservative lower bound estimate of expected WTP, if this linear interpolation assumption

is correct.

For the second K-variant we follow Whitehead (2017), Richardson and Lewis (2022), and

Lewis et al. (2024) and adopt their “adjusted Kriström estimator” (K.adj). This approach

considers the slope of a linear regression of prob(YES) on observed bid values. The authors
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then linearly extrapolate the WTP distribution from the last observed point {PB, ŷp,B},

using this slope estimate to identify the cut-off bid PB+1. The original approach taken

in Lewis et al. (2024) only uses interior points to derive the slope estimate. In our case,

this still leads to excessively high cut-off bids for some individuals due to relatively flat

prob(YES)-regions across interior bids. This problem is mitigated when the hypothetical

(but realistic) first point ŷp,0 = 1 is used in the slope computation (see Figure A2 in the

online appendix).4 Since no such empirical guidance for the determination of PB+1 exists

for the TB.up, we do not consider this estimator in our empirical application.

Standard errors and uncertainty bounds

Wager and Athey (2018) show that predictions flowing from random forests are asymptoti-

cally unbiased and normally distributed under a set of standard assumptions, most notably

the honesty principle discussed above. Wager and Athey (2018) also illustrate how esti-

mates of the asymptotic variance can be obtained, allowing for the construction of standard

errors and confidence intervals. These asymptotic guarantees apply directly to our forest-

generated choice probabilities in (7). In fact, the R package grf, which we use for the forest

portion of our analysis, automatically generates a full set of individual-level standard errors

along with point-predictions (Tibshirani et al., 2024a,b). This may be useful in situations

where the prediction of voting probabilities for different segments of the target population

is of central interest.

Here we are primarily interested in WTP estimates, for which we also seek asymptoti-

cally valid standard errors and confidence intervals. Clearly, all three of our nonparametric

estimators in (9) through (11) are linear combinations of bid values and the estimated

probabilities flowing from the forest. Since the latter are, in theory, independently and

asymptotically normally distributed, we could derive estimated standard errors for WTP

via simple algebraic manipulation (e.g. Greene, 2012, app. B). However, we prefer fol-

4In his original exposition, Kriström (1990) takes a similar approach, but only uses the last two points
at the two highest observed bids to compute the slope estimate. As observed by Lewis et al. (2024) this
can lead to excessive cut-off values and WTP estimates when acceptance probabilities do not change much
across these final two bid values, a situation they call the “fat tails” problem.
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lowing Creel and Loomis (1997) and Zapata and Carpio (2024) and use bootstrapping to

obtain standard error for each WTP estimate. This guards against deviations of the in-

dependence assumption in finite samples, especially under smoothing adjustments (Haab

and McConnell, 2003), and better captures the notion that each block of B bid-probability

pairs fed into the Turnbull and Kriström estimators corresponds to a single individual.

This is similar in spirit to the panel or block bootstrap discussed i.e. in Cameron and

Trivedi (2007), section 11.6.2., where individuals represent the panel or block level, and the

predicted YES probabilities form the panel-specific observations. To align post-estimation

procedures across all models we also use bootstrapping to derive standard errors for the

Logit. The exact steps of this bootstrap are given in the online appendix.

Simulation

To motivate our approach as guarding against misspecification we simulate data for three

different models. Each model has a logistic error to conform to the standard Logit assump-

tions, but differs in the composition of its expectation function. Model M1 has a simple

linear form, such that the generic Logit is the correct specification. It’s corresponding latent

WTP (i.e. surplus minus bid as in equation (3)) can be written as:

w∗
i = 1 + x2,i ∗ β2 + x3,i ∗ β3 + x′

r,iβr + ϵi, with

ϵi ∼ LOG
(
0, γ−1

)
, γ = 0.5

x2 ∼ n
(
1.5, 0.42

)
, x3 ∼ n

(
2.5, 0.42

)
,

xr,j ∼ n (0, 1) , j = 1 . . . 7, βr,j = 0, j = 1 . . . 7

(12)

where error scale γ−1 is the inverted marginal utility of income, to align with our “surplus”

representation in (3). Our main focus rests on the specification of covariates x2 and x3,

with the remaining seven regressors and corresponding null coefficients added to pose an

adequate challenge in finding split points for our RF specifications.5 The bid vector is

chosen to correspond to the following percentiles of w∗
i : 5, 18, 31, 44, 57, 70, 83, and

5As noted in Tibshirani et al. (2024b), RFs perform best if trained on > 3 variables.
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96. This assures a monotonic decline in YES probabilities over bids, which (largely) limits

the need for smoothing adjustments in our nonparametric estimators. As discussed above,

setting the highest bid to the 96th percentile implies that very few individuals still choose

the policy option at this price. This, in turn, guarantees that our simulation results will

not be materially affected by the assumed cutoff bid (PB+1 in the previous section) for the

K and Tb.up estimators. We choose this cutoff price as at the 99th percentile of latent

WTP, and use the same value for all individuals. “Observed” response indicator yi is then

constructed following the usual decision rule as captured in equation (4) above.

Model M2 is generated in the same fashion as M1, but introduces piecewise-linearity

into the expectation function via:

β2 = 0 if x2,i ≤ x̄2, β2 = 2 otherwise

β3 = −1 if x3,i ≤ x̄3, β3 = 4 otherwise

(13)

where the “bar” notation indicates the sample mean. This mimics a situation where pref-

erences for certain quality attributes change around specific threshold points. For example,

water clarity (or algal concentration) may not matter much until visibility increases above

(or drops below) a certain threshold. Other attributes may switch from a disamenity to

a benefit, as conveyed by the β3 case. For example cold water temperatures in a lake

or river may be perceived as undesirable for the purpose of water-based recreation, while

warmer temperatures beyond some threshold may suddenly increase the value of such a

site. Of course, the opposite could also hold, as exemplified by the problem of wildlife

over-abundance in certain recreation areas or neighborhoods. Random Forests are gener-

ally well-suited to capture these types of nonlinearities, while the standard linear Logit will

be misspecified by construction.

Our third stylized model continues along these lines by adding piecewise-nonlinearity to

the original setup. Specifically:

β2 = 0 if x2,i ≤ x̄2, β2 = 0.2 ∗ x2,i otherwise

β3 = 3 if x3,i ≤ x̄3, β3 = −0.5 ∗ x3,i otherwise

(14)
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For each model we generate n = 4, 000 observations, which we split evenly into a training

and test sample. The training sample is used in actual estimation, while the test sample

is used for predictions of choice probabilities and welfare measures, and corresponding

model fit statistics. We estimate all three specifications with a standard linear Logit and

a classical regression RF (with an MSE-based splitting rule), respectively.6 As described

in Tibshirani et al. (2024b) and discussed in Johnston and Moeltner (2024), RFs can be

adjusted via several tuning parameters. We choose the grf default of 2000 underlying trees

after observing that predictive fit stabilizes around 1,000 trees. We let the grf algorithm

determine optimal settings of other key tuners, such as minimum leaf size (i.e. when a node

becomes too small to be split further) and the number of randomly sampled covariates

considered at each split occasion, via built-in cross-validation (Johnston and Moeltner,

2024; Tibshirani et al., 2024a,b). Before the bundle of predicted probabilities for a given

individual generated by the RF gets processed by the Turnbull and Kriström estimators, we

check for monotonic smoothness and eliminate divergent bid-probability pairs (Haab and

McConnell, 2003). We keep track of these corrections and report summary statistics for

these smoothing adjustments, as discussed below.

Predicted probabilities

We first examine the predicted YES probabilities produced by the different models. Figure

1 shows a scatter plot of M1 results for the Logit (top panel) and RF (bottom panel) vis-

a-vis the corresponding true probabilities, with the superimposed 45-degree line indicating

perfect concordance. As expected, the Logit, which is the correct specification in this case,

predicts underlying YES probabilities very accurately, with all point-pairs tightly arranged

along the parity line. However, the RF also performs reasonably well, especially in the tail

areas. Not surprisingly, there is more variability in predictions near the 0.5-boundary, where

unobservables have a relatively stronger influence on the mix of observed votes yi within a

given leaf (see (7)). This picture changes dramatically for scenario M2 with its piecewise-

6For comparison, and given the binary nature of our outcome variable, we also estimate classification
forests, which use a slightly different splitting rule for its underlying trees (Hastie et al., 2017; Greenwell,
2022). The results are essentially identical to those produced by the regression forests.
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linear expectation function. As can be seen from Figure 2, the linear Logit model is unable

to track the correct probabilities, and produces an almost random pattern of predictions. In

contrast, the RF predictions are still tightly clustered around the parity line, with very few

exceptions. A similar picture emerges for scenario M3, as shown in Figure A3 of the online

appendix. This provides a first indication of the robustness of RFs to deviations from the

customary linear specification in indirect utility and expected WTP.

Predicted WTP for test set observations

Turning to welfare estimates, our first round of simulations produces WTP predictions for

each individual in the test sample, and captures predictive fit for the sample at large via MSE

and Mean Absolute Percentage Error (MAPE).7 Results are given in Table 1. The table

has three blocks of rows, one for each simulation scenario. The first row in each block shows

results corresponding to the correct expected WTP value for each test observation. The first

four numeric columns give the mean, standard deviation, minimum, and maximum WTP

across all test observations. As is evident from the table, mean and standard deviations are

of comparable magnitude across all models and simulations, and located in close proximity

to the corresponding true values. As expected given the underlying formulas (equations (9)

through (11)), the mean Kriström estimate is nested between the lower and upper Turnbull,

respectively.

In contrast to means and standard deviations, the range between minimum and max-

imum predicted WTP (third-to-last-column) is considerably larger for the Logit model

compared to the forest-based versions and the true WTP dispersion. This divergence is

especially pronounced for the two scenarios (M2, M3) for which the Logit is misspecified

by construction. Specifically, the Logit range is 75% wider than the true dispersion for M2,

and over double the width of the actual spread of WTP for M3. In stark contrast, all ranges

generated by the forest-based models, while under-predicting actual dispersion, are within

5-30% of the true range, with the TB.low performing especially well in that respect. One

7Formally, the MSE is given as 1
nT

∑n
i=1 (ŵi − w∗

i )
2, where nT is the size of the test sample, ŵi is the

predicted WTP (in dollars) for sample observation i. The MAPE, in turn, is derived as 100
n

∑nT
i=1 |

ŵi−w∗
i

w∗
i

|.
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reason for the excess dispersion of individual welfare estimates exhibited by the Logit for

scenarios M2 and M3 is the vastly increased error variance under mis-specification. While

the actual variance corresponding to a stipulated scale of γ−1 = 2 amounts to γ−2∗π2

3 ≈ 13,

the estimated variance for M2 and M3 equals (approximately) 36 (scale of 3.3), and 25

(scale of 2.8), respectively.

The last two columns of Table 1 show MSE and MAPE statistics for all scenarios and

models. Not surprisingly, the Logit exhibits the best fit (= smallest MSE, MAPE) when it is

correctly specified, with the Kriström estimator performing best among the nonparametric

specifications. This picture is flipped again for scenarios M2 and M3, for which the Logit

produces by far the largest MSE and largest to second-largest MAPE, respectively. For

both nonlinear scenarios, the Kriström estimator stands out as the most accurate predictor

amongst all models as measured by both goodness-of-fit statistics.

Additional intuition on model performance is given by Figures 3 and 4, which depict

histograms for the entire distribution of true vs. estimated expected WTP values. Each

figure contains four panels, one for each model. In each panel, the distribution of true

WTP values is given in grey shading, with the estimated distributions super-imposed in

a darker (blue) shading. For each panel, the x-axis gives WTP in dollars, while the y-

axis captures normalized frequencies, such that the area under each histogram sums to one.

Figure 3, which corresponds to the linear scenario M1, mirrors the results from Table 1: The

Logit tracks the true empirical distribution of WTP very closely. As expected, the WTP

distribution for the lower-bound Turnbull is shifted to the left, and that for the Tb.up is

(slightly) shifted to the right compared to the true pattern. The distribution produced by

the K estimator is largely centered on the correct version, but missed some mass in the

right tail.

Figure 4 shows analogous panels for nonlinear scenario M2. By construction, the true

distribution of individual (expected) WTP is starkly bimodal, given the central location of

the kink points for β2 and β3, as stipulated in (13). As is clear from the upper left panel, the

generic Logit produces an approximately symmetric distribution, which completely misses

the correct pattern. In contrast, all three forest-based models reproduce the bi-modality
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of the true distribution, but with the Tb.low shifting the entire histogram to the left, and

the Tb.up moving the entire distribution to the right. The K estimator, in turn, matches

both shape and range of the true WTP distribution quite well, which translates into the

superior goodness-of-fit statistics compared to the other specifications observed in Table 1.

Scenario M3 generates very similar patterns, which can be inspected in Figure A4 of the

online appendix.

Predicted WTP for selected policy points

In our second simulation exercise we generate predicted (expected) WTP estimates for

three selected out-of-sample points, set at the first, second (median), and third quartile of

the empirical distribution of covariates x2 through x10 in (13). This mimics a situation

where point-specific predictions are sought, for example in a Benefit Transfer (BT) context

(Johnston et al., 2015; Johnston and Moeltner, 2024). Results are given in Table 2, which

features the same block-of-rows structure as Table 1. For each target point, the table

captures the expected WTP estimate, along with its asymptotic standard error (derived

via 500 bootstrapped samples, as discussed above), and the lower and upper bound of the

corresponding 95% confidence interval (C.I.). For the point estimates, the value closest to

the true E(wtp) is highlighted with a frame. We also added grey shading to confidence

intervals that contain the true WTP value.

As can be seen from the table, the Logit generally produces the smallest asymptotic

standard errors in most instances. This is as expected, given that the RF-models require

two estimation steps to arrive at WTP, while for the Logit WTP estimates can be derived

directly as a linear combination of estimated model coefficients (see equation (8)). However,

in most cases the forest-generated standard errors are of the same order of magnitude as

those produced by the Logit, even for the linear model. This is reassuring, as it indicates that

the switch from a parametric, single-step estimator to a nonparametric, two-step approach

does not come at the cost of prohibitively high efficiency losses. In terms of accuracy, the

Logit estimate is, not surprisingly, closest to the true value for the linear model, but for all

other cases one of the forest models, usually the K-estimate, exhibits higher proximity to
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the true target. In terms of coverage, we note that the Logit and at least one of the forest

estimators generate confidence bounds that contain the true WTP for the linear model. For

the nonlinear scenarios, the K-generated C.I. contains the target estimate in three of six

cases, with the upper Turnbull achieving the same for the third quartile point and M2.

Smoothing analysis

A remaining issue to examine is the RF’s ability to generate YES-probabilities that are

monotonically decreasing with increasing bid amount, at the individual level. Table 3

gives an overview of incidences where smoothing adjustments were necessary to impose

monotonicity. Each pair of columns refers to one of our simulation scenarios (M1, M2,

M3). The first column for each pair shows the sample count for each possible number of

adjustments (given eight offered bids), as listed in the very first column of the table. As is

evident from the table, for scenario M1 only 67 observations, or 3.35% of the test sample,

required any smoothing intervention. More smoothing is needed for the nonlinear scenarios

M2 and M3, but the number of adjustments per individual remain largely in the one to

two range, with zero adjustments continuing to exhibit the highest frequency. These results

indicate that smoothing remains the exception rather than the norm at least for our stylized

data, such that we can be confident that our simulation results are not overly influenced by

these monotonicity adjustments.

In sum, based on the totality of these simulation results we conclude that our RFNP

estimator is capable of competing with a “workhorse” parametric approach in terms of

accuracy and efficiency even in a situation where the parametric model is correctly specified.

Furthermore, the RFNP remains robust under deviations from linearity in covariates in IUF

and expected WTP, for both predicted choice probabilities and WTP estimates. It is able

to detect multi-modality and gaps in empirical WTP distributions, and generate out-of-

sample predictions with a reasonable to excellent degree of accuracy and efficiency (in

terms of uncertainty bounds). Perhaps most reassuringly, the RFs appear to be sufficiently

refined to (largely) assure that predicted YES probabilities decrease with increasing bids, a

critical prerequisite for using the nonparametric estimators in the second step without the
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need for excessive smoothing. In the next section we will put our RFNP framework to test

in an actual empirical context.

Empirical Application

Data

For the empirical application of this study we rely on CV data and socio-demographic /

attitudinal information that were collected as part of a larger SP project, which also included

a Discrete Choice Experiment (DCE). The DCE component is analyzed in Faccioli et al.

(2024). Here, we consider the CV portion of their survey, which has not yet been examined

in any empirical context. To provide some policy background, the survey aims to elicit

United Kingdom (UK) residents’ preferences for biodiversity-enhanced open land areas to

offset lost lands due to housing developments. Specifically, recently implemented UK laws

stipulate that housing developers must ensure a minimum 10% “uplift” in biodiversity at

or near a given construction site. In the survey, these “Net Gain” projects are interpreted

as enhancing a nearby tract of open land with elements conducive to increased biodiversity,

such as trees, shrubs, and, possibly, water features. Inspired by ongoing initiatives of several

local planning authorities, who aim to achieve a greater than 10% biodiversity enhancement,

the survey proposed to respondents a policy option, at extra cost, of different degrees of

additional “uplift” (Faccioli et al., 2024). As described in the original paper, the survey data

were collected online through a market research company that contacted a representative

sample of UK residents during Spring 2022. This produced 3,600 completed questionnaires.

The final sample after some cleaning steps comprises 3,203 observations (Faccioli et al.,

2024).

The specific CV question we use for this application proposed a policy scenario with a

“Moderate Nature Enhancement” net gain project to offset lost open space due to a new

housing development.8 The sample was split according to three features of the housing

8While the survey asked four consecutive CV questions of each respondent, we consider only the first for
this analysis to avoid potential ordering or sequencing effects (Champ et al., 2017; Johnston et al., 2017)
and maintain the “gold standard” setting of a single binary choice questions offered to a given individual.
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project: (1) distance from the respondent’s location (2 miles / 50 miles), (2) scale of the

new development (100 homes / 2000 homes), and (3) the wealth level (low, average, high)

of the affected population, i.e. stakeholders that live near the open land that is lost due

to development. Each split sample was also told that the offset parcel with enhanced

biodiversity would be within the same distance from their residence as the new development,

and benefit the same neighborhood, as defined by its wealth level, that would lose existing

open space. Respondents were then asked if they preferred the SQ, i.e. the new development,

as described, with an offset open land parcel that features only minimal legal enhancement

requirements at no additional cost, or the policy scenario, i.e. the new development with

an offset parcel that features a moderately enhanced ecosystem that goes beyond legal

requirements, at a specific tax increase of Pb. The payment was specified as annual for a

period of five years. Respondents were also assured that the enhanced project would be

maintained for 30 years. Figure A5 in the online appendix shows an example CV question.9

In terms of utility-theoretic underpinnings, which are relevant for our Logit specifica-

tion, development features and household characteristics are preserved in the analysis via

interaction with the policy-specific constant term. The online appendix gives the explicit

structure of the model. We would ex ante expect WTP to increase with proximity to a

respondent’s home, as this would raise opportunities related to potential use values (e.g.

bird / wildlife watching on the biodiversity-enhanced offset parcel). By the same token,

willingness-to-pay should also increase with the scale of the new development, as this would

imply a larger offsetting and enhanced policy parcel. It may also increase with decreasing

wealth of affected neighborhoods if WTP is driven by environmental justice concerns.10

Each survey taker was randomly assigned one of eight different bid values, ranging from

£2 to £96. The distribution of YES and NO responses over bids for the sample at large is

given in Table A5 of the online appendix. As is clear from the table, sample proportions

of YES votes range from over 83% for the lowest bid to just over 32% for the highest tax

9The full survey instrument is given in the last section of the online appendix.
10In the Choice Experiment portion of the survey, Faccioli et al. (2024) find indeed that distance has a

significantly negative effect on WTP, and that WTP increases if neighborhoods of lower wealth are affected.
They did not analyze the effect of development / parcel scale, as the CE portion only referred to the
100-homes scenario.
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level. Such a sizable share of YES responses to the highest bid, while challenging from an

estimation perspective, is not uncommon in CV applications.11 This relatively large share of

YES responses to the highest observed bid raises the stakes for a reasonable choice of cut-off

bids for our nonparametric estimators. As discussed above, we take a two-pronged approach

to address this issue. Our K.tr estimator circumvents the problem by truncating the WTP

survival function at the highest observed bid, accepting a downward bias and “lower bound”

interpretation for expected WTP in exchange, assuming that linear interpolation between

interior bids is not too far off the mark in tracking the unknown survival function. On the

other hand, the K.adj approach takes an empirical route by deriving individual-specific cut-

off bids via linear extrapolation, utilizing information on YES-responses to the observed bid

amounts, and following recent literature (Richardson and Lewis, 2022; Lewis et al., 2024).

We should note that this large share of acceptances at the highest bid and implied long tail

for the expected WTP function also poses a challenge for the generic Logit model, which,

for a given individual, is restricted to symmetry by definition. On the bright side, Table

A5 also shows that empirical YES proportions are monotonically decreasing over the entire

bid range, which should limit the need for smoothing interventions as discussed above and

empirically verified below.

Estimation results

For purely illustrative purpose, we predict (expected) WTP for biodiversity-enhanced open

space conditional on two “cornerstone” development scenarios, a (presumed) “high value”

scenario S1, with features: 2 miles, 2000 homes, low wealth, and a (presumed) “low value”

scenario S2, with characteristics: 50 miles, 100 homes, high wealth. In a first estimation

round, we predict this welfare measure for each individual in the sample and report sum-

mary statistics. In a second round we predict the sample mean of expected WTP, along

with asymptotic standard errors and confidence bounds, using bootstrapping as described

above. For both rounds of predictions we adopt each household’s characteristics and at-

11Parsons and Myers (2016) examine 86 CV studies conducted between 1995 and 2014, and find that 48%
of them exhibit an acceptance probability of 30% or higher at the highest bid.
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titudinal scores as collected in the survey, but set the development / affected population

attributes to S1 or S2, respectively, for all individuals. Tables A3 and A4 in the online

appendix give an overview of household-level variables. As before, we compare estimation

results between the Logit and the different RFNP versions. Specifically, we derive expected

WTP using the lower Turnbull (Tb.low), truncated Kriström (K.tr) and adjusted Kriström

(K.adj.) estimators, as discussed in the previous section. As for the simulation exercise, we

train our RFs with 2,000 trees and let grf’s built-in cross-validation feature determine the

optimal setting for the remaining tuners. We use the entire sample of 3,203 observations to

accomplish this task.12

Estimation results for individual-level WTP predictions are given in Table 4. The table

shows the mean, standard deviation, minimum, maximum, and range of individual WTP

for the sample at large, holding scenario-specific attributes at “S1” and “S2” levels, respec-

tively. The upper block of rows gives results for scenario S1, with the lower block capturing

estimates for S2. Within each block, the first four rows show results for each of our four

estimators (Logit, TB.low, K.tr, K.adj), while the fifth row captures the empirically derived

cut-off bid for the K.adj. We first note that the linear Logit model exhibits the well-known

problem of negative WTP predictions, which are nonsensical in our context, especially of

such large magnitude (down to -£58.6 for S1, and -£77.2 for S2). As discussed in Haab

and McConnell (1997) this could, in theory, be circumvented with alternative parametric

approaches, but at the cost of further increasing the sensitivity of welfare estimates to un-

derlying distributional assumptions. As is evident from Table 4, this problem is avoided by

construction for our nonparametric estimators, which exhibit reasonable minimum WTP

values in the £25-£35 range.

Across scenarios, we observe the expected higher mean WTP for S1 compared to S2,

though differences are negligible for the RF-based models. In contrast, the large gap between

mean WTP estimates for S1 over S2 produced by the Logit appears to be inflated and is

likely an artifact of negative WTP values, which are even more pronounced for the second

12To construct predictions for individual-specific YES probabilities, we consider only trees that were not
“grown” with the help of the target observation to avoid over-fitting. This “out-of-bag” strategy is another
built-in grf feature that is automatically activated when training and prediction samples are identical.
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scenario. Across forest-based models, we note that the ranking of mean WTP estimates is

Tb.low < K.tr < K.adj, as expected. While the Tb.low and K.tr produce similar means and

distributional ranges, the K.adj exhibits a pronouncedly wider distributions, with maxima

in the £700-1000 range across the two scenarios. As is evident from Figure 5 in the main

text, and Figure A7 in the online appendix (both discussed below in more detail), these

long right tails are driven by a relatively small number of outlier cases, with the bulk of

WTP estimates confined to the £45-85 range. As a result, the mean WTP estimates for the

K.adj are of the same order of magnitude as those generated by the other models for both

policy scenarios. Specifically, they are approximately 45-50% higher than those produced

by the K.tr, and 55-60% higher than the Tb.low counterparts.

As depicted in the last row for each scenario-specific block in Table 4, the mean empirical

cut-off bid for the K.adj lies between £180 and £185 for both scenarios. For comparison,

Figure A6 in the online appendix captures mean WTP results for S1 for the generic K model

(as used in our simulation) for a series of arbitrary cut-off bids, applied to all individuals. At

a common cut-off of £185, mean WTP generated by the K model for scenario S1 amounts

to approximately £65, which is close to the value of just over £69 produced by the K.adj.

Conversely, the common ad-hoc cut-off that would produce the same mean estimate as the

K.adj amounts to (approximately) £205, which is not too far from the empirical mean cut-

off of £183. We take this comparison as evidence that the mean WTP estimates generated

by the K.adj model are not overly influenced by the outlier cases at the right-tail end of the

sample distribution.

Figure 5 depicts histograms for the distribution of individual expected WTP estimates

produced by our four models, for the first development scenario. For the three forest-based

graphs, we super-impose the WTP estimates one would obtain from the traditional, “one-

for-all” Tb.low and K-estimators, based on empirical sample proportions as vertical blue

lines (Haab and McConnell, 1997, 2003; Lewis et al., 2024). The figure shows clearly that

the RFNP models produce a right-skewed welfare distribution across individuals that is fully

contained in the positive realm, while the Logit remains fairly symmetric and reaches into

negative territory with its left-hand tail. The second key insight to be gained from the figure
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is that the traditional nonparametric estimates (vertical (blue) lines), while located within

proximity of the mean estimates of their counterpart RFNP specifications, fail to capture

the considerable heterogeneity in welfare measures we observe for our sample. In other

words, our RFNP models are much better suited to answer questions on distributional im-

plications of land use policies, such as those considered in our scenarios. As mentioned at the

onset, this is highly relevant given increasing awareness and concerns among policy-makers

regarding equity and “environmental justice” issues related to envisioned environmental

interventions.

Asymptotic results for scenario-specific mean WTP estimates are captured in Table

5. The table columns repeat the mean estimate from Table 4, followed by its asymptotic

standard error (s.e.), lower and upper bounds of the corresponding 95% C.I., and the range

of the C.I. As before, scenario-specific results are organized in blocks of rows, with each row

corresponding to one of our four models. The main take-home message from the table is that

none of the s.e.’s generated by the RFNP specifications are excessively inflated compared

to the Logit, mirroring our insights from the simulation exercise above. In fact, s.e.’s for

the Tb.low and K.tr are considerably smaller than those produced by the Logit, leading to

C.I.’s that are two to three times tighter then the respective Logit counterpart. For the

K.adj, in turn, standard errors are approximately three times larger than those generated

by the other RFNP models. They are of similar magnitude to those flowing from the Logit

for S1, and approximately twice as large as the Logit s.e.’s for S2. Arguably, uncertainty

intervals for all our RFNP specifications are sufficiently tight to be informative from a policy

perspective, with C.I. spans in the £7 (for Tb.low and K.tr) to £27 (for K.adj) range13

Smoothing analysis

Table 6 gives smoothing diagnostics akin to those shown for the simulation exercise (Table

3). As is evident from the table, over 85% of individual WTP predictions were generated

without any need to enforce monotonicity via ad-hoc smoothing for both development

13Naturally, to what extent these ranges still allow for a clear decision rule in, say, a Benefit-Cost Analysis
context will depend on the actual policy question.
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scenarios. Of the remaining cases, the majority only requires a single adjustment (= removal

of a single bid-prob(YES) pair), with very few observations necessitating a larger number of

interventions. Nonetheless, the analyst needs to decide if cases with “excessive smoothing”

should be dropped from estimation, and where this elimination threshold should be located.

For our analysis, we excluded all cases with > 3 monotonicity violations, which implies an

attrition of 47 observations for S1, and 36 observations for S2. We perform a sensitivity

analysis to this rule, and compute individual and aggregate expected WTP for different

elimination thresholds. Results are given in Table A6 of the online appendix for elimination

thresholds of “drop none” to “drop if > 0 monotonicity violations.” As is obvious from

the table, our RFNP estimates are generally robust to these decisions, with the Tb.low and

K.tr mean WTP estimates remaining essentially invariant, and changes in K.adj estimates

remaining in the single-digit range.

For the latter, these subtle changes are largely driven by the (inadvertent) removal of

extreme right-hand tail outliers that were “caught” in the smoothing rule. This is clearly

depicted in Figure A7 of the online appendix, which gives box-and-whisker plots for all

smoothing scenarios (and policy scenario S1). Interquartile ranges (IQRs, shown as a (very

tight) box), and even the 1.5 times IQR bounds (shown as horizontal lines) remain essentially

unchanged across the different interventions. The only visible change in the distribution

of WTP is the reduction in extreme outlier points going from “drop none” to “drop if any

violation.” Overall, we conclude that monotonicity violations and corresponding smoothing

requirements are a second-order concern for our empirical application.

Variable importance

While not of central importance for this study, we give a brief glimpse at RFs’ ability

to discern the influence of individual covariates on the outcome of interest, in our case the

binary response to the choice question.14 A list of such “post-hoc interpretability” measures

is given in Greenwell (2022), ch. 6. Here we consider the perhaps simplest of these metrics,

14In theory, one could extrapolate from there to determine an individual covariate’s effect on WTP, but
we leave that to future research.
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commonly labeled as Variable Importance (VI) score, as it is a standard feature of the grf

package (Tibshirani et al., 2024a,b). It simply keeps track how often a given explanatory

variable is chosen as the splitting variable in the constructions of underlying trees. This

score is then normalized to add to one across all covariates.

Figure A8 in the online appendix shows VI scores for the ten most “influential” variables

in our RF. Is is evident from the figure, the bid amount dominates this list, accounting for

over 25% of all splitting occurrences. The only other two variables that achieve a VI score

of 0.1 or higher are occ plan (1 = individual works in a planning-related occupation) and

env memb (1 = membership with an environmental organization). Without going into deeper

discussion on variable-specific effects, we simply not that the heightened sensitivity of our

forests to the bid amount is consistent with their ability to produce generally well-behaved

bid-prob(YES) pairs feeding into the nonparametric portion of our estimators.

Conclusion

This study gives a first example how powerful ML tools such as RFs can be directly in-

corporated into the economic valuation of environmental assets and services based on SP

methods. Focusing on the “gold standard” case of CV, we illustrate how RF estimation

of choice probabilities can be combined with well-known nonparametric methods to gener-

ate individual-specific welfare measures. Most importantly, these can be obtained without

the need to specify an explicit IUF or WTP function, and without having to choose a

distribution for error terms. In a simulation exercise we show that our RFNP estimators

are competitive with a standard Logit model even under correct specification of the WTP

function, and clearly out-perform the parametric model when nonlinearities are introduced

into the data generating mechanism. Using biodiversity enhancement in the UK as an em-

pirical example, we show that the RFNP can generate reasonable estimates of individual

and sample-averaged WTP, with sufficient asymptotic precision to be informative for policy

applications. Compared to traditional nonparametric methods that typically only produce

a single WTP estimate for the sample at large, our RFNP models map out the entire distri-
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bution of individual WTP predictions, and thus allows for a closer look at distributional and

equity implications of envisioned policy interventions. As an added bonus, our approach

produces asymptotically guaranteed standard errors and confidence intervals, thanks to re-

cent developments in deriving the asymptotic properties of RF estimates (Wager and Athey,

2018; Athey et al., 2019).

Naturally, there are trade-offs. Specifically, our fully nonparametric framework comes

at the cost of having to impose (occasional) monotonicity corrections to assure acceptance

probabilities of the policy scenario decrease with increasing bid levels, and, for our K-

based versions, having to choose or derive a cut-off bid that “closes” the survival function

for individual WTP (see Figure A2 in the online appendix). We find that smoothing

interventions are a second-order concern for our empirical application, whereas handling the

tail of the survival function has a more profound influence on WTP estimates. However,

our Tb.low and K.tr estimates are not affected by these cut-off choices. They therefore offer

a guaranteed lower bound (Tb.low) and a less conservative plausible lower bound (K.tr) of

individual-level WTP. Our K.adj. estimator, in turn illustrates the ability of our framework

to allow for long tails in individual WTP without imposing this assumption on the entire

sample. It utilizes all known pairs of bids and YES-probabilities in the determination of

the cut-off value, and thus follows recent “best-practice” recommendations in the literature

(Richardson and Lewis, 2022; Lewis et al., 2024).

We consider our proposed framework a starting point that opens doors for extensions

along multiple dimensions. For example, one could consider different RF variants in the

first stage of our analysis, such as the Local Linear Forest (LLF) proposed in Friedberg

et al. (2021) and applied in Johnston and Moeltner (2024), Boosted Regression Forests, or

Classification Forests with different splitting rules (Tibshirani et al., 2024a,b). A logical

next step would also be to compare RFNP estimators to more complex versions of binary

parametric models, perhaps with built-in nonlinearities, different error distributions, or a

built-in model search, as in Johnston et al. (2023). It may also be fruitful to explore com-

binations of RFs with some of the nonparametric estimators mentioned in the introduction

section, other than the Turnbull or Kriström. Naturally, additional stress-tests of the RFNP
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in other empirical contexts would be another logical extension.

On a final note, our RFNP framework is user-friendly and simple to implement given

existing software packages. It is also computationally fast, at least for data sets of moderate

size (say a few thousand observations), as they are typically encountered in SP research.

This gives the analyst a lot of flexibility to experiment with “best judgment” tuning in-

terventions as they may be needed in a given context, at reasonable computational costs.

Overall, we believe the RFNP approach can be an attractive alternative or complement to

parametric processing of CV data. Our first results, as reported in this study, are certainly

encouraging.
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Figure 1: true vs. predicted prob(YES), linear model (M1)
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Figure 2: true vs. predicted prob(YES), piecewise-linear model (M2)
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Figure 5: predicted indiv. WTP, biodiversity application, scen. S1

Blue lines and text capture the corresponding generic nonparametric estimators based on sample
proportions.
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Table 1: Simulation results for test sample

estimator mean std min max range mse mape

linear (M1)
true E(wtp) 19.957 1.758 14.572 25.550 10.978 0.000 0.000

Logit 20.012 1.706 14.885 25.612 10.727 0.229 0.019
Turnbull.low 17.893 1.778 12.477 20.986 8.509 4.830 0.104
Kriström 19.487 1.467 15.488 22.237 6.749 0.656 0.030

Turnbull.up 21.082 1.193 18.499 23.528 5.029 1.844 0.063

piecewise-linear (M2)
true E(wtp) 26.397 6.912 17.509 38.550 21.041 0.000 0.000

Logit 26.205 6.082 7.425 44.327 36.903 16.037 0.142
Turnbull.low 23.772 7.216 14.158 33.032 18.874 8.669 0.113
Kriström 26.050 6.795 17.372 34.843 17.472 1.764 0.039

Turnbull.up 28.329 6.377 20.585 36.683 16.097 5.644 0.089

piecewise-nonlinear (M3)
true E(wtp) 26.579 5.294 16.997 33.465 16.467 0.000 0.000

Logit 26.624 4.651 8.120 42.156 34.036 11.526 0.108
Turnbull.low 23.673 5.942 14.573 30.447 15.874 9.822 0.119
Kriström 25.809 5.475 18.301 32.035 13.735 1.422 0.038

Turnbull.up 27.945 5.024 22.020 33.650 11.630 2.736 0.060

std = standard deviation
min / max = minimum / maximum
mse = mean squared error
mape = mean absolute percentage error
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Table 3: Smoothing diagnostics, simulation

M1 M2 M3
adjustments count % count % count %

0 1933 96.65% 865 43.25% 1514 75.70%
1 67 3.35% 744 37.20% 318 15.90%
2 0 0.00% 391 19.55% 84 4.20%
3 0 0.00% 0 0.00% 84 4.20%
4 0 0.00% 0 0.00% 0 0.00%
5 0 0.00% 0 0.00% 0 0.00%
6 0 0.00% 0 0.00% 0 0.00%
7 0 0.00% 0 0.00% 0 0.00%

total 2000 100.00% 2000 100.00% 2000 100.00%
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Table 4: WTP predictions, individual level

estimator mean std min max range

Policy scenario S1

Logit 57.071 34.478 -58.556 193.388 251.943

Turnbull.low 44.570 7.059 25.277 84.158 58.880
Kriström, trunc. 47.955 6.857 35.688 84.435 48.747
Kriström, adj. 69.407 50.324 37.450 744.082 706.632

K.adj. cutoff £183 £101 £104 £1,620 £1,516

Policy Scenario S2

Logit 38.443 34.478 -77.183 174.760 251.943

Turnbull.low 43.144 7.241 25.137 87.794 62.658
Kriström, trunc. 46.599 7.153 33.056 87.967 54.910
Kriström, adj. 68.676 56.940 34.161 966.945 932.784

K.adj. cutoff £184 £114 £97 £2,021 £1,924

std = standard deviation
min / max = minimum / maximum
range = (max - min)
Turnbull.low = lower bound Turnbull estimator
Kriström, trunc. = truncated Kriström estimator
Kriström, adj. = adjusted Kriström estimator
K.adj.cutoff = estimated cutoff bid for adjusted Kriström
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Table 5: WTP predictions, sample mean

estimator mean s.e. low up range

Policy scenario S1

Logit 57.071 5.960 46.442 68.457 22.015
Turnbull.low 44.570 2.190 38.062 45.982 7.920

Kriström, trunc. 47.955 1.997 42.024 49.422 7.398
Kriström, adj. 69.407 6.611 56.405 82.303 25.898

Policy Scenario S2

Logit 38.443 3.481 31.027 44.929 13.901
Turnbull.low 43.144 2.232 35.522 44.029 8.507

Kriström, trunc. 46.599 2.015 39.923 47.195 7.271
Kriström, adj. 68.676 6.658 53.037 79.777 26.739

s.e. = standard error
low / up = lower / upper bound of 95% confidence interval
range = (upper - lower)
Turnbull.low = lower bound Turnbull estimator
Kriström, trunc. = truncated Kriström estimator
Kriström, adj. = adjusted Kriström estimator

46



Table 6: Smoothing diagnostics, application

scenario S1 scenario S2
adjustments count % count %

0 2753 85.95% 2768 86.42%
1 336 10.49% 313 9.77%
2 42 1.31% 45 1.40%
3 25 0.78% 41 1.28%
4 27 0.84% 24 0.75%
5 20 0.62% 12 0.37%
6 0 0.00% 0 0.00%
7 0 0.00% 0 0.00%

total 3203 100.00% 3203 100.00%

47


