
Random Forests for Benefit Transfer

Robert J. Johnston

Department of Economics and George Perkins Marsh Institute, Clark University
R.Johnston@clarku.edu

Klaus Moeltner

Department of Agricultural and Applied Economics, Virginia Tech
*moeltner@vt.edu

October 25, 2024

Abstract

Benefit Transfer (BT) has evolved as the dominant non-market valuation method for
large-scale environmental benefit-cost analyses, including those required of U.S. federal
agencies. Yet, even best-practice approaches for BT based on Meta-Regression Models
(MRMs) typically exhibit poor predictive fit and out-of-sample efficiency. This article
introduces Random Forests (RFs) for nonparametric estimation of MRMs and con-
struction of BT predictions. We compare the performance of a variety of RF models to
current best practice approaches for BT, including a globally-linear MRM and Locally-
Weighted MRM (LWR). We find that forest-based models substantially improve the
within-sample accuracy of welfare predictions and tighten confidence intervals of pre-
dicted benefits for out-of-sample transfers. The best-performers reside within the family
of Local Linear Forests (LLFs), essentially a hybrid approach that combines elements
of RFs and LWR. We also examine the utility-theoretic properties of each specification.
Results suggest that this new approach has the potential to substantially improve BT
accuracy for environmental policymaking without sacrificing theoretic properties, while
simultaneously reducing econometric and computational difficulties relative to leading
alternatives.
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Introduction

Prospective or ex ante benefit cost analysis (BCA) is a cornerstone of U.S. environmental

policymaking (Aldy et al., 2021). As mandated in Executive Orders since 1981 and outlined

in Office of Management and Budget (OMB) Circulars A-4 and A-94, U.S. federal agencies

are required to implement BCA for economically significant regulations and programs, in-

cluding regulatory policies under the U.S. Clean Water Act (Office of the Federal Register,

1981, 1993; The White House, 2011; U.S. Environmental Protection Agency, 2024b).

However, quantifying environmental benefits to inform decision-making faces numerous

practical challenges (Griffiths et al., 2012; Newbold et al., 2018b). Among these, a recurring

concern has been an inability to reliably capture non-market environmental benefits. This

is particularly true for large-scale water quality improvements wherein benefits are diffuse,

spatially heterogeneous, and conditional on localized circumstances (Johnston et al., 2017;

Keiser and Shapiro, 2019; Keiser et al., 2019). Yet, the capacity to accurately measure

spatially explicit benefits can be a decisive factor in whether environmental policies and

programs pass a benefit-cost test (Keiser, 2019).

For practical purposes, environmental benefit estimation within large-scale BCA almost

universally requires benefit transfer (BT), characterized as the use of pre-existing empirical

estimates of value from similar research settings (Griffiths et al., 2012; Johnston et al., 2021).

As noted by Newbold et al. (2018b), p. 469, within the context of U.S. Environmental

Protection Agency (EPA) policy analysis, “it is impossible to conduct a prospective BCA

without the use of at least some form of benefit (and cost) transfers.” This reality is further

acknowledged within updated guidance found in OMB Circulars A-4 and A-94, which gives

increased emphasis and sanction to these methods.1

Yet there remains an unresolved and frequently acknowledged tension between the un-

avoidable use of BT for environmental benefits estimation within large-scale BCAs and the

1The earlier 2003 version of OMB Circular A-4 stated that BT should “be treated as a last-resort option
and not used without explicit justification.” This language has now been deleted and replaced with a state-
ment that “benefit transfer methods are appropriate when more direct and specific valuations are unavailable
or inferior, or when time, resources, or other constraints do not permit conducting studies specific to the
regulatory context” (Office of Management and Budget, 2023, p.37).
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observation that even best-practice BTs still remain, on average, relatively inaccurate, as

assessed by statistical fit to the underlying data (Newbold et al., 2018b; Johnston et al.,

2021). This concern has been acknowledged since the establishment of BT as a formal sub-

field of environmental economics research (Brookshire and Neill, 1992), and remains true

despite continued methodological advances and incremental improvements in accuracy and

reliability (Newbold et al., 2018b; Johnston et al., 2021; Moeltner et al., 2023).

Existing best-practices for BT

In recent years, Meta-Regression Modeling (MRM) has emerged as a preferred route for

BT by U.S. federal agencies (Griffiths et al., 2012; Newbold et al., 2018b). In essence, this

method synthesizes data over many prior valuation studies in ways that collectively repre-

sent conditions at the “policy sites” (or contexts) for which value estimates are required

(Johnston and Rosenberger, 2010; Kaul et al., 2013; Johnston et al., 2021). It lies at the core

of benefit-estimation platforms such as U.S. EPA’s prototype BenSPLASH model for wa-

ter quality valuation (Corona et al., 2020).2 From an econometric perspective, a valuation

MRM can be interpreted as a secondary regression model, with comparable, study-specific

welfare estimates on similar environmental goods and services as the outcome variable, and

study-specific features and other observables (e.g., geospatial information, demographics,

etc.) on the “right-hand-side.” Advantages of MRMs for BT include an often wide geo-

graphic coverage of the supporting metadata, ability to capture study-level heterogeneity,

and flexibility in accommodating ancillary spatially-explicit data, as described, inter alia,

in Rolfe et al. (2015), Johnston et al. (2021), and Moeltner et al. (2023).

Parallel to the increased use of MRM for BT, considerable efforts have been undertaken

to improve the accuracy (as gauged via cross-validation on the meta-sample itself) and

efficiency (as measured in terms of predictive confidence bounds) of this method (John-

ston et al., 2018). Examples include expansion of the metadata (Moeltner et al., 2023),

2Examples of recent EPA rulemaking based on BT-via-MRM include effluent guidelines for the construc-
tion and development category (U.S. Environmental Protection Agency, 2009), water quality standards for
nutrients in lakes and rivers in Florida (U.S. Environmental Protection Agency, 2010), effluent limitations
for the steam electric power generating sector (U.S. Environmental Protection Agency, 2015, 2020, 2024a),
and effluent guidelines for the meat and poultry sector (U.S. Environmental Protection Agency, 2023).
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inclusion of spatially explicit variables not captured in the original studies (Johnston et al.,

2017, 2019), and incorporation of functional relationships to assure compliance of BT esti-

mates with utility-theoretic considerations (Kling and Phaneuf, 2018; Newbold et al., 2018a;

Moeltner, 2019). Yet despite these advances, the predictive properties of even best-practice

MRMs remain arguably unsatisfactory for many applications, with large Cross-Validation

(CV) errors against the actual metadata, and wide confidence intervals for BT predictions

(Moeltner et al., 2023).

In the latest attempt to address these shortcomings, Moeltner et al. (2023) propose a

locally-weighted version of the MRM, which they label Locally-Weighted MRM, or LWR.

The key feature of the LWR is that the characteristics of the target policy context are

now incorporated twofold in the prediction process: (i) via combination of policy settings

with estimated coefficients, as in the generic, or Globally-Linear MRM (GL-MRM), and (ii)

via assignment of weights to each meta-observation. These weights, in turn, capture how

closely related to the policy point each actual observation is, in the Euclidean sense. Points

more similar to the policy context receive a larger weight in the final regression step, while

more distant points are down-weighted or completely eliminated from the data. Moeltner

et al. (2023) show that this approach brings substantial gains in both predictive accuracy

and efficiency compared to the GL-MRM.

However, these accuracy gains come with considerable implementation challenges. The

LWR requires a time-consuming search for optimal weight settings and is susceptible to rank

violations as observations are dropped from estimation as part of the weight construction

process. Weights must be re-configured and a local regression re-estimated for each policy

context. This can be cumbersome for large-scale applications, involving potentially tens

of thousands of predictive contexts. This juxtaposition of potential accuracy gains with

amplified practical difficulty exemplifies, at least arguably, the most important contempo-

rary question for BT — how can accuracy be advanced while maintaining methods that are

feasible within applied BCA settings?
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A logical next step: Random Forests for BT

Addressing this challenge head-on, this article develops and evaluates a novel alternative

to MRM BT that achieves both goals simultaneously — enhanced ease of application and

(steeply) increased accuracy relative to extant methods. Specifically, we adapt a Machine

Learning (ML) tool know as Random Forests (RFs), and a recently developed variant

thereof labeled Local Linear Forests (LLFs, Friedberg et al. (2021)) to process valuation

metadata in ways that enable (much) more efficient, accurate and straightforward BT value

predictions, compared to current best-practice MRMs.

Random Forests were first introduced to the ML literature by Breiman (2001). As

discussed in Hastie et al. (2017), Harding and Lamarche (2021), and Storm et al. (2020),

RFs are among the most powerful and effective prediction techniques. They can detect

highly nonlinear relationships, are robust to non-normality and outliers, provide algorith-

mic treatment of missing data, require little in terms of pre-processing or tuning, and are

computationally less demanding than alternative ML approaches such as Neural Networks

(Fernández-Delgado et al., 2014). Yet, they have only very recently entered the realm of en-

vironmental and resource economics, primarily as an alternative approach to estimate causal

treatment effects in the policy evaluation literature (Miller, 2020; Harding and Lamarche,

2021; Stetter et al., 2022; Liu et al., 2023; Valente, 2023; Prest et al., 2023; Mink et al.,

2024).

Given their singular focus on prediction and the high stakes of “getting it right,” BT

problems represent an ideal laboratory for ML-type solutions, such as RFs. It is perhaps

surprising that this integration has not previously been formalized. We are aware of only

one published article in the environmental economics literature that exploits the predictive

strength of RFs, within the context of detecting industrial water pollution violations (Hino

et al., 2018). Ours is thus one of the very few contributions that use RFs, or, for that

matter, any ML-based approach in the environmental and resource economics literature,

and the first to introduce ML / RFs to the MRM-BT realm.3 To our best knowledge, it is

3In agricultural economics, Sun et al. (2024) use a generic RF for a meta-analysis of meat preferences. In
contrast to our study, they do not provide any econometric underpinnings that illustrate common ground
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also one of the first studies adapting LLFs for any applied economics context.

The proposed methods are illustrated using an updated variant of the long-established

metadata in Moeltner et al. (2023), on per household WTP for water quality improvements

in U.S. waterbodies.4 This application enables direct comparison of BT performance for

essentially identical metadata (including out-of-sample CV using identical policy contexts).

Using these metadata, we show that RFs, and especially the LLF variants, reduce predictive

error by a factor of four to five compared to the LWR, and tighten confidence intervals for

BT predictions by a factor of 10 to 20 relative to the LWR. We also examine utility-theoretic

properties such as the Adding-Up (AU) restriction (Newbold et al., 2018a; Moeltner, 2019),

and find that all of our forests empirically satisfy AU for small, but realistic incremental

quality steps. As such, the proposed methods substantially outperform even the most

accurate prior method for MRM BT (LWRs), for the same illustrative metadata and BT

applications. They are also much easier to apply than LWRs, obviating the need for time-

consuming specification searches and ad-hoc adjustments in the presence of rank violations.

The presented approach is applicable to any regression-type context where out-of-sample

predictions are of central importance, of which BT is an archetype. Most importantly,

the illustrated methods represent an approach that could revolutionize the ways that BTs

are implemented for large-scale BCA, in that they are both more accurate than extant

approaches and can be applied in straightforward fashion via readily adaptable methods

and code.5

and differences between regression models and forests. Furthermore, they do not employ any LLF-type
forests, do not use forests to generate truly out-of-sample predictions (i.e. outside the entire metadata), and
do not appear to construct forests in a manner to ascertain asymptotic properties, as is the case for all of our
forest versions. The latter is especially important if confidence intervals are desired for predictive constructs,
as described below in more detail. However, they do observe pronounced accuracy gains in predictive fit to
the actual metadata for forests versus common regression approaches, thus mirroring our findings in that
respect.

4This metadata has been updated and improved continuously since first published in Johnston et al.
(2003) and Johnston et al. (2005). It has been repeatedly used as the foundation for U.S. EPA regulatory
BCAs (Moeltner et al., 2023), along with complementary analyses such as Newbold et al. (2018a), Johnston
et al. (2017), Johnston et al. (2019), Moeltner (2019), and Newbold and Johnston (2020). It is thus the
most heavily applied, published, and evaluated metadata in the valuation literature.

5Our entire analysis is coded in R and builds on existing R packages (Tibshirani et al., 2024a,b). This code
will be made accessible to the broader research community to facilitate adoption of this promising method
for other BT applications.
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Modeling framework

Following Moeltner et al. (2023) we depart from a baseline GL-MRM that has been found

to have desirable utility-theoretic properties while affording ease of estimation. For a given

observation (or source study “site”) i, with i = 1 . . . n, it can be written as:

log

(
yi

q1,i − q0,i

)
= x′

c,iβ +m′
iγ + δ

(
q0,i + q1,i

2

)
+ ϵi, with

ϵi ∼ n
(
0, σ2

)
,

(1)

where yi is the source-study estimated willingness-to-pay (WTP) for a water quality change

from status quo level q0,i to policy level q1,i, vector xc,i comprises explanatory variables

that are related to site- or population characteristics (referred to as “context-specific” in

Moeltner (2019), Moeltner et al. (2019), and Moeltner et al. (2023)), mi is a vector of

(typically study-specific) methodological indicators (e.g. type of elicitation method, type

of payment vehicle, time horizon for payments, etc.), and ϵi is an i.i.d. error term that is

normally distributed with mean zero and variance σ2.

Building on this standardized approach, Moeltner et al. (2023) introduce the LWR,

a local specification of the GL-MRM model that estimates a separate version of (1) at

each sample location, defined as a point or set of points that share identical settings for

some vector of weight variables z, typically comprised of most or all elements of xc,i, plus

(optionally) additional variables not included in the baseline regression. As described in

Moeltner et al. (2023), at each location g = 1 . . . G there will be one or more “home

observations” with weight values zg. All other points in the MRM will deviate from zg in

one or more dimensions. These deviations (in the Euclidean sense) are then converted to

weights in the [0, 1] interval via choice of distance function, window size, and weight function.

Details for this selection / specification process are given in Moeltner et al. (2023).

Once each point in the metadata has received a weight (with home observations carrying
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a weight of one), the locally-weighted version of (1) at location g can be specified as:

√
wi,g log

(
yi

q1,i − q0,i

)
=

√
wi,g

(
x′
c,iβg +m′

iγg + δg

(
q0,i + q1,i

2

))
+ ϵi, with

ϵi ∼ n
(
0, σ2

g

)
,

(2)

where wi,g is the weight assigned to observation i with respect to location g. As is clear from

(2), all model coefficients now carry location-specific subscripts. Error terms are typically

not weighted, but receive location-specific variance σ2
g .

In essence, the LWR can be interpreted as a semi-parametric method that lends flexibil-

ity to estimation without proliferating on parameters and corresponding degrees of freedom

(Pagan and Ullah, 1999; Fotheringham et al., 2002; McMillen and Redfearn, 2010). Moelt-

ner et al. (2023) show that the LWR can greatly sharpen predictions for actual sample

points within a convergent validity setting, and reduce variance at the BT stage (when the

true value is unknown) compared to the GL-MRM. Hence, the LWR is more accurate than

the GL-MRM for BT, as one might anticipate. However, the identification of promising

weight settings (= combination of weight variables in z, choice of distance function, window

size, and weight function) requires a computationally intensive cross-validation (CV) pro-

cess. An additional challenge when working with LWRs are possible rank violations that

can occur when the explanatory data matrix is “cut” to the chosen window size, and some

regressors become collinear. This can easily happen in metadata with its typically small

to moderate sample size, and many (often sparse) binary covariates. In addition to these

practical implementation challenges, the LWR still requires the explicit specification of a

base function, and a fully specified statistical distribution for the error term.

In light of these challenges, RFs may offer an attractive alternative to extract signals

from metadata and form BT predictions without the need to rely on a specific regression

function. As mentioned above, they have made an entry into applied economic work in

recent years, where they have been found to be a useful tool to predict outcomes and, to

a larger extent, estimate causal treatment effects in the policy evaluation literature.6 Fun-

6These “causal forests” were developed by Wager and Athey (2018) and generalized in Athey et al. (2019).
A case study-type application is given in Athey and Wager (2019).
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damentally, an RF is a fully nonparametric framework that can take as input a potentially

very large set of explanatory variables (generally referred to as “features” in machine learn-

ing) and combine them in a flexible fashion to explain outcomes or isolate causal effects,

without making any assumptions on underlying functional relationships.7 As we show be-

low in more detail, they do not suffer from risk of rank violations, and do not require the

ex-ante construction of location-specific weights. Instead, as discussed in Wager and Athey

(2018), Athey et al. (2019), and Friedberg et al. (2021), RFs produce local weights via an

adaptive neighborhood kernel that is entirely data-driven. Greenwell (2022) gives a detailed

and accessible introduction to regression trees and forests with many empirical applications.

In our context, an RF model can be generically written as

log

(
yi

q1,i − q0,i

)
= g (xc,i,mi, q0,i, q1,i) + ϵi, with

E (ϵi|xc,i,mi, q0,i, q1,i) = 0,

(3)

where g (.) is an unspecified nonparametric function, and the only assumption required

for the error term is a conditional expectation of zero, implying unconfoundedness with

observed / included variables. Note that we have preserved the nonlinear transformation of

the dependent variable on the left hand side of (3) for a more even-footed comparison with

the other two modeling frameworks. As shown below, this transformation also supports

consistency with utility-theoretic properties of estimated welfare effects.

Predictions / Benefit transfer

Perhaps the clearest way to compare these three approaches - GL-MRM, LWR, and RF - is

by examining the econometric underpinnings of how they generate predictions, for example

in a BT context. Letting ỹi = log
(

yi
q1,i−q0,i

)
, collecting xc,i,mi, q0,i, q1,i into vector xi, and

all model coefficients in θ, the predicted outcome ỹp at some policy point xp flowing from

7This is particularly useful for a BT context, wherein theory provides little guidance as to the functional
relationships that enable calibration of welfare estimates for differences between valuation settings or sites.
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the GL-MRM can be derived as

E (ỹp|xp,X, ỹ) = x′
pθ̂ = x′

p

(
X′X

)−1
X′ỹ =

n∑
i=1

ri (xp,X) ỹi,
(4)

where X is the full matrix of explanatory variables, ỹ is the full n by 1 outcome vector, and

ri (.) is the ith element of x′
p (X

′X)−1X′. Thus, the predicted construct can be interpreted

as a weighted sum of outcomes for all original sample points. Each weight is a function of

the entire feature matrix and the policy setting xp.

Applying standard transformations, WTP predictions in dollars can be obtained as

ŷp =
1

T

T∑
t=1

(
exp

(
x′
p,tθ̂ + log (q1,p − q0,p) + 0.5 ∗ s2

))
, (5)

where index t refers to a specific combination of methodological indicators in m, and s2

is the estimated variance of the error term. As is evident from (5), the final prediction is

obtained by averaging over all possible combinations of methodological settings, as originally

suggested in Moeltner et al. (2007), and applied in Moeltner (2019), Moeltner et al. (2019),

and Moeltner et al. (2023). This neutralizes the effect of methodological indicators, which

are de facto nuisance terms in the BT step. Naturally, for within-sample predictions, say

of actual meta-outcome yi, the original settings in mi are used instead.

Predictions for the LWR can be obtained in similar fashion as weighted sum of sample

observations. Specifically:

E (ỹp|xp,X,W (zp) , ỹ) = x′
pθ̂p = x′

p

(
X′W (zp)X

)−1
X′W (zp) ỹ =

n∑
i=1

li (xp,X,W (zp)) ỹi,
(6)

where indexing θ by subscript p highlights that a local regression tailored to home observa-

tion xp was employed, W (.) is an n by n diagonal matrix featuring weights wi,g, introduced

in equation (2) above, and li (.) is the ith element of x′
p (X

′W (zp)X)−1X′W (zp). As is
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evident from the second line in (6), observation-specific prediction weights li are now also a

function of the entire weight matrix W (zp). Specifically, points closer to the weight vector

for the policy setting, zp, receive a larger weight in this averaging process, ceteris paribus.

Actual welfare predictions, in dollars, can then be obtained via (5), using local θp instead

of global θ.

In contrast to these prior approaches, the building blocks of an RF are a large number of

underlying “trees.” Each tree b = 1 . . . B operates on a bootstrapped subset of the full data.

A tree is “grown” by repeatedly and sequentially splitting the data into two segments. At

each splitting occasion, the tree chooses a random subset of the explanatory variables, and

within that set the feature and splitting point that best satisfy some optimization criterion.

For example, in a standard regression RF the splitting objective is to maximize the reduction

between the mean squared error (MSE) at the “parent” node, i.e. the combined data before

the split, and the combined MSE in the two “child” nodes. This process is repeated at each

new node until all observations are assigned to a terminal “leaf.” This then allows to form

leaf-specific predictions based on the values of the outcome variable for all observations

that share the same leaf (e.g. simple average for standard regression forests). The RF at

large then generates a final predictive value for a given combination of features, say xp,

via a weighted average of tree-specific predictions, as will be shown next in more detail.

A stylized example highlighting the mechanisms of a simple regression tree is given in the

online appendix.

Formally, predictions from the RF composed of trees b = 1 . . . B can be derived as:

ỹp|xp,X, ỹ =
1

B

B∑
b=1

1

|Lb (xp) |

n∑
i=1

ỹi I (xi ∈ Lb (xp)) =

n∑
i=1

ỹi
1

B

B∑
b=1

I (xi ∈ Lb (xp))

|Lb (xp) |
=

n∑
i=1

αi (xp,X) ỹi,

(7)

where Lb (xp) is the terminal leaf of tree b that contains policy point xp, |Lb (xp) | denotes

the number of original training samples that were assigned to leaf Lb (xp), and I (.) is an
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indicator function taking a value of one if the condition it describes holds, and a value of

zero otherwise. The first line in (7) simply indicates that the RF prediction is an average

over trees of tree-specific predictions, which, in turn, are constructed as the average of

outcomes for all observations sharing the same leaf as xp within a given tree. The second

line in (7) switches summation, and the third line makes explicit that RF predictions can

again be interpreted as weighted sum of outcomes over all sample observations, akin to the

two previous examples.

However, in this case individual weights αi (.) represent the relative frequency with which

ỹi shares the same leaf as the policy point. Thus, sample observations with features xi that

are close to xp will be in the same leaf as the policy point relatively more frequently across

trees, and thus carry a larger weight in the summation step. As is clear from this exposition,

in contrast to the LWR these adaptive neighborhood weights do not require an extraneous

weight matrix W to sharpen predictive focus towards the policy point. Furthermore, in

contrast to both the GL-MRM and the LWR, RF predictions are not dependent on estimated

model coefficients θ̂, or, in other words, a prescribed combination of xp, X, and y that

represents the underlying regression model, as is the case for (4) and (6).8

Welfare estimates, in dollars, can then be obtained as in (5), by using the original forest

to predict ỹp for each methodological setting, and omitting the correction term 0.5 ∗ s2 in

the exponent function.9

Local Linear Forests

Friedberg et al. (2021) propose a variant of RFs which they label Local Linear Forests

(LLFs). As is argued in that article, RFs are well suited to detect nonlinear and high-

dimensional signals in the data, but are less apt at modeling smooth, linear or close-to-linear

8An alternative approach to derive the result in (7) would be to consider a weighted regression on a
constant term, as shown in the online appendix.

9This correction arises for the GL-MRM and LWR due to the assumed normality of the error term for the
logged model. Converting to levels (dollars) implies moving from the normal to a log-normal distribution.
The correct expression for the expectation of this log-normal density requires the addition of one half times
the estimated error variance in the exponent, as given in (5) (e.g Greene, 2012, ch.4). Since the RF does
not require normality, or, for that matter, any statistical distribution for the error term, this correction does
not apply.
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relationships. Furthermore, RF predictions may be unreliable at leaf boundaries and in

sparse regions of the covariate space. Local Linear Forests combine the splitting mechanism

of an RF to detect nuanced relationships with a linear regression at the prediction stage to

more appropriately model smooth signals. This regression has two additional features: (i)

it directly adjusts for covariate differences between data point xi and policy point xp, and

it includes a ridge penalty to prevent overfitting.

Assume a forest is evaluated and produces weights αi (xp,X) , i = 1 . . . n. Continuing

to label our outcome of interest as ỹp, the regression problem in the predictive step focusing

on policy point xp can be formally written as (see Friedberg et al., 2021, equ.3):

[
ˆ̃yp θ̂p

]′
=

argmin
ỹp,θp

{
n∑

i=1

αi (.)
(
ỹi − ỹp − (xi − xp)

′ θp

)2
+ λ||θp||2

}
, where

||θp||2 =
k∑

j=1

θ2p,j ,

(8)

λ is the ridge penalty, and k denotes the number of coefficients in θ, which is equal to

the full set of features in the explanatory data. The solution to this penalized regression

problem can be written as (see Friedberg et al., 2021, equ.5):

[
ˆ̃yp θ̂p

]′
=

(
X′

pAXp + λJ
)−1

X′
pAỹ, (9)

where Xp is an n by (k + 1) matrix of centered features, with each row starting with a value

of one, followed by (xi − xp)
′ , i = 1 . . . n, A is a diagonal matrix of dimension n featuring

weights αi (.), and J is a (k + 1) by (k + 1) diagonal matrix with zero in the first position,

and ones along the remainder of the diagonal.

The sought prediction ˆ̃yp is the first element of this (k + 1) by 1 solution vector. Consider

(k + 1) by 1 vector a with one as its first element, and zeros elsewhere. We can then write
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ˆ̃yp = a′ ∗
(
X′

pAXp + λJ
)−1

X′
pAỹ =(

a′ ∗
(
X′

pAXp + λJ
)−1

X′
p

)
Aỹ =

n∑
i=1

γi (xp,X)αi (xp,X) ỹi,

(10)

where γi (.) is the i
th row of

(
a′ ∗

(
X′

pAXp + λJ
)−1

X′
p

)
. This yields again a weighted-

sum expression for the predicted policy outcome, as is evident from the last line in (10).

However, in this case, two sets of weights are involved. Forest weight αi (.), as before,

and local adjustment weight γi (.). Intuitively, the former enhances the contribution of

data point i in the formulation of the policy prediction based on joint membership in

terminal tree leaves, while the latter fine-tunes this weight by considering the actual vector

distance between data and policy point. In other words, if forest leaves containing xp are

sparse, unbalanced, or constrained by boundary restrictions, the second weight adds an

additional tool to better calibrate the leaf-specific prediction to xp. With ỹp in hand, final

transformations to obtain WTP in dollars can then be obtained as for the generic RF above.

Friedberg et al. (2021) show that the performance of LLFs can be further enhanced

by adding a splitting rule that differs from the generic MSE-based rule in standard RFs.

Specifically, they propose to use a ridge regression at each parent node to predict outcomes

for all sample observations currently residing at that node. They then impose a standard,

MSE-based split on the residuals flowing from this regression. As argued by the authors, this

allows to model local / nonlinear effects in the construction of the forest, while capturing

smooth, global effects at the prediction stage. Using simulations and empirical examples,

they find that this LLF with ridge splitting produces substantially better predictive fit,

especially in high-dimensional models with many smooth components. We will adopt ridge

splitting for all our LLFs, and refer to the corresponding specification simply as “LLF.”

The R package grf, which we use for all our forest models, offers an additional adjustment

option for the LLF, which performs well in our application (Tibshirani et al., 2024a,b).

Specifically, the analyst can replace the uniform penalty matrix J in (9) and (10) with the
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variance-covariance matrix of the centered regressors (i.e. Xp in (9) and (10)). This controls

for potential differences in scale, i.e. undue influence of features that systematically take

larger values than others. An analogous adjustment can be made at the splitting stage if the

ridge regression approach is used. We henceforth label the LLF with covariance-adjusted

ridge penalty in both splitting and prediction as “LLF.cov.”10

Derivation of standard errors and confidence intervals for predictions

We estimate all regression models in a classical econometric framework, basing inference and

uncertainty measures for BT predictions on standard asymptotic theory. For both the GL-

MRM and LWR, standard errors and confidence intervals for dollar-valued BT predictions,

as shown in (5), are derived via the simulation approach proposed by Krinsky and Robb

(1986).

Wager and Athey (2018) and Athey et al. (2019) derive the asymptotic properties of

estimates flowing from various types of RFs. Specifically, they show that these estimates

are asymptotically normal and consistent. This opened the door for the use of RFs for

statistical inference, including the computation of asymptotically valid standard errors and

confidence intervals. Friedberg et al. (2021) shows that these asymptotic results also extend

to LLFs. An important prerequisite for these asymptotic guarantees is the construction of

forests via the “honesty” principle, i.e. by using different portions of the data to grow a

given tree, and populate the leaves, respectively. We follow this honesty principle for all our

forest-based models. We choose the delta method as the most straightforward approach to

compute standard errors and confidence intervals for our dollar-valued welfare predictions

(e.g. Greene, 2012, ch.4) .

Assessing model fit

We use MSE and Mean Absolute Percentage Error (MAPE) to assess the predictive per-

formance of all models with respect to actual sample observations on (dollar-valued) WTP.

10This covariance adjustment to control for scale-imbalances can be seen as the analog to the covariance-
adjusted distance metric suggested by Moeltner et al. (2023) for the LWR.
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Deviations between predicted and observed WTP are commonly referred to as “transfer

errors” in the MRM literature (Stapler and Johnston, 2009; Johnston et al., 2017, 2019;

Moeltner et al., 2019; Vedogbeton and Johnston, 2020; Moeltner et al., 2023). For the

GL-MRM we take a standard Leave-One-Out (LOO) approach to derive these statistics, as

described in detail in Moeltner et al. (2019). A similar CV approach based on omitting the

home observation from its respective local regression is used for the LWR, with details given

in Moeltner et al. (2023). For forests, within-data predictions are generated by considering

only trees that were not constructed with help of the target observation in the averaging

formulas in (7) and (10), generally referred to as “out-of-bag” predictions (e.g. Tibshirani

et al., 2024c).11

Utility-theoretic considerations

Kling and Phaneuf (2018), Newbold et al. (2018a), and Moeltner (2019) examine the utility-

theoretic properties of different MRM specifications. The main questions in this context

are if the chosen baseline MRM is guaranteed to generate WTP predictions that exhibit

scope (larger WTP for a more pronounced change in quality), and Adding-Up (AU, the

sum of benefits over incremental quality changes equals, approximately, total WTP for the

entire change). Moeltner (2019) shows that the GL-MRM in the current context (deemed

MRM2 in the original study) satisfies scope under mild and verifiable conditions, and ap-

proximately satisfies AU if the coefficient on the quality midpoint, i.e. δ in equation (1),

is close to zero. Building on a series of policy simulations, Moeltner (2019) finds that δ is

indeed sufficiently small to assure AU holds within negligible margins for their water quality

metadata (essentially the predecessor to our data).

Formally, as shown in Moeltner (2019), the scope condition holds for the GL-MRM as

long as δ (qp,1 − qp,0) > −2, for some quality levels q0,p < q1,p. Given that the quality

11Formally, the MSE is given as 1
n

∑N
i=1 (yi − ŷi)

2, where ŷi is the predicted WTP (in dollars) for sample

observation i. The MAPE, in turn, is derived as 100
n

∑n
i=1 |

ŷi−yi
yi

|. As mentioned in Moeltner et al. (2023),
the MAPE has several statistical shortcomings compared to the MSE, but remains a popular metric to
assess fit in the MRM/BT literature (Stapler and Johnston, 2009; Johnston et al., 2017, 2019; Moeltner
et al., 2019; Vedogbeton and Johnston, 2020).
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parameter δ is typically positive, this will be satisfied in most contexts.

In turn, the AU condition for the GL-MRM requires the following equality to be satisfied,

for some quality levels q0,p < q1,p < q2,p, context-specific policy settings xc,p and holding

methodological indicators at zero for ease of exposition (Moeltner, 2019):

WTP (q0,p → q2,p) =

exp
(
x′
c,pβ

)
∗ exp

(
δ

(
q0,p + q2,p

2

))
(q2,i − q0,i) =

WTP (q0,p → q1,p) +WTP (q1,p → q2,p) ≈

exp
(
x′
c,pβ

)
∗
(
exp

(
δ

(
q0,p + q1,p

2

))
(q1,i − q0,i)+

exp

(
δ

(
q1,p + q2,p

2

))
(q2,i − q1,i)

)
,

(11)

where the approximation symbol in the third line indicates that (typically minor) income

effects have been ignored in the summation of step-wide WTP measures. As can be easily

verified, the AU equality only holds if δ = 0, and likely holds within acceptable policy

margins if δ is small.

For the LWR, scope will be satisfied as long as the local quality parameter δp exceeds

− 2
(qp,1−qp,0)

, analogous to the GL-MRM. Regarding AU, on the surface it appears that the

same reasoning presented above for the GL-MRM should apply to the LWR in equation

(2), as it essentially represents the GL-MRM specification with weighted data. However,

this is not the case if starting and / or endpoint quality q are used in weight construction.

In that instance, all weights will have to be re-configured with a change in q as the target

observation’s weight values now have changed as well. This could potentially lead to the

selection of different sample points to contribute to the local regression. Even if the local

sample remains the same, weight values for each observation will be different for different

settings of q. This, in turn will affect the coefficient estimates for the local regression, i.e.

β in (11) will be different for the full-step and the interim-step WTP models. Adding-up

would then require close-to-equality for the different sets of coefficient vectors, in addition

to δ ≈ 0 in all models involved.
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In theory, the AU properties of the GL-MRM can be inherited by the LWR if quality

is not used in weight construction. In that case the local regression coefficients remain

unchanged, and (11) can be applied to the weighted data. However, it would be difficult

to imagine a situation where a key variable such as quality would not be a relevant weight

variable. In Moeltner et al. (2023), who use essentially the same metadata as we do in

this study, quality was found to be an important component in all of their preferred weight

settings.

For our forest models (RF, LLF, LLF.cov) a single forest is first “trained” using the

actual metadata, with quality midpoint
q0,i+q1,i

2 among the set of covariates. As mentioned

above, we adopt the transformed outcome of the GL-MRM, i.e. ỹi = log
(

yi
q1,i−q0,i

)
. For any

combination of xc,p, ql,p, qh,p, l < h, the forest will predict ỹp (xc,p, ql,p, qh,p). Conversion to

WTP, in dollars, then implies:

ŷp (xc,p, ql,p, qh,p) = exp (ỹp (xc,p, ql,p, qh,p)) ∗ (qh,p − ql,p) (12)

If the different quality steps are small enough such that ỹp (.) is approximately equal across

all quality change scenarios (recall xc,p remains invariant), AU will (approximately) hold by

construction, as can be easily deduced from (12). Scope, in turn, will be satisfied if the term

in the exponent in (12) is non-decreasing in qh,p for some common baseline ql,p. Since our

forests use the quality mid-point as one of their features, this implies that scope will hold

as long as otherwise identical policy points xp generally end up in terminal leaves with sets

of neighbors that exhibit outcome values that remain constant or increase with increasing

midpoint. For AU, we need these neighbors to remain relatively invariant with changes in

q.

In a nutshell, the satisfaction of core theoretic properties will largely be an empirical

questions for the LWR (assuming quality is used in weight construction) and all of our forest

versions. We examine this in more detail in a simulation exercise below.
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Empirical application

Data

We use essentially the same metadata on WTP for water quality improvements in various

water bodies across the U.S. as Moeltner et al. (2023).12 As described there, these data (and

earlier versions) have been employed in numerous publications and EPA rulemaking contexts

(e.g. U.S. Environmental Protection Agency, 2015; Johnston et al., 2017; Newbold et al.,

2018a; Johnston et al., 2019; Moeltner, 2019; U.S. Environmental Protection Agency, 2020).

As these metadata and their progenitors are described in detail in these prior publications,

we provide only a concise summary here. The metadata are drawn from primary stated

preference studies that estimate per household (use and nonuse) WTP for water quality

changes in U.S. water bodies. Studies were limited to those for which WTP estimates

could be readily mapped to water quality changes measured on a standard 100-point Water

Quality Index (WQI) from an identifiable baseline, following methods described in Johnston

et al. (2017) and Johnston et al. (2019). Studies with primary focus on drinking water

were not considered. The final data comprise 188 observations from 58 source studies. The

dependent variable before transformation is WTP in 2019 dollars, to maintain comparability

with the results reported in Moeltner et al. (2023).

Detailed variable descriptions are given in Moeltner et al. (2023). Table 1 gives an

overview of these variables, along with descriptive statistics. As is evident from the third

column, our metadata comprise a mix of continuous and binary features, for which tree-

based methods are generally well-suited (Friedberg et al., 2021). At the same time, the

presence of several continuous variables presents the possibility of globally smooth and

quasi-linear effects of these features on WTP. This, in turn, supports consideration of LLF

models of the type we use in our analysis. The last three columns, directly adopted from

Moeltner et al. (2023), indicate which variables entered the three sets of weight combinations

used for the LWR.

12The only (minor) adjustment we make to the data used in Moeltner et al. (2023) is a re-labeling of re-
gional indicators “northeast,” “central,” and “south” to corresponding U.S. census regions, for compatibility
with regional designations in agency rulemaking.
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Forest tuning

As discussed in Tibshirani et al. (2024b), the main training parameters for forests in grf

are the number of underlying trees, (num.trees) the fraction of the sample to be used for a

given tree (sample.fraction), the minimum allowable node size (min.node.size), and the

number of features to be considered at each splitting occasion (mtry). We choose the default

setting of 2000 trees for num.tree, based on a preliminary examination of the effect of tree

number on model fit, as summarized in the online appendix to this paper. We allow all other

parameters to be optimally tuned via cross-validation (setting tune.parameter=‘‘all’’

in grf). We also use cross-validation to tune parameters related to control “honesty” as

described above, and to guide balance in splitting, as described in Tibshirani et al. (2024b).

As mentioned in Tibshirani et al. (2024a), parameter tuning is not (yet) available in

grf for LLF’s that use a splitting rule based on ridge regressions (our preferred approach).

Thus, for all our LLF specifications we adopt default settings for all training parameters,

as listed in Tibshirani et al. (2024a). Robustness checks for different parameter settings,

given in the online appendix, illustrate that changes in key tuners do not have any material

effects on predictive accuracy.

Model Fit

Table 2 shows results for predictive fit with respect to actual metadata points, as described

above. The first row captures mean prediction errors for the GL-MRM, i.e. an MSE of 62.6

(in thousands), and a MAPE of approximately 124. The following ten rows give results for

the best-performing LWR models that did not suffer from rank violations in the CV process

and thus utilize all 188 observations.13 The table also shows each LWR’s weight setting

components. For example, LWR-1 used the weight variables listed under C1 in Table 1,

an un-adjusted distance function, a bi-square weight function, and a window size of 188

(= the entire sample). These weight settings parse the data into 143 distinct locations.

As is evident from the table, and noted in Moeltner et al. (2023), the LWRs shave off

13We impose this full-sample restriction for better comparability to our other estimation frameworks,
which, by default, operate on the entire data. As a result, the top ten models captured in the table, and
their corresponding model fit metrics, differ slightly from those reported in Moeltner et al. (2023).
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approximately two thirds of the GL-MRM’s MSE, and reduce the MAPE by 35-45%.

The last three rows of the table present model fit statistics for our three forest specifica-

tions. Clearly, all three forests yield an additional, and substantial improvement in model

fit, with MSE’s reduced to the 6.4 to 7.7 range. This figures are essentially an order of

magnitude smaller than those corresponding to the GL-MRM, and approximately one third

to one fourth the magnitude of the MSE’s produced by the LWR versions. The forests also

exhibit smaller MAPE’s than any of the other models, with the LLF versions performing

especially well in that respect, more then halving the MAPE of the GL-MRM, and reducing

the lowest LWR MAPE by another 18-20%.

In a nutshell, all three forest versions generate far superior model fits compared to their

regression-based counterparts. Applying standard terminology from the BT literature as

introduced above, this is akin to a substantial reduction in value transfer or generalization

error. We examine next if this gain in predictive accuracy translates into commensurate

improvements in predictive efficiency for out-of-sample points, such as a BT context.

Benefit Transfer comparison

To assess model performance in a BT context, where WTP for a given policy context is

unknown by definition, we simulate a large number of BT scenarios with different combi-

nations of values for several explanatory variables. The general strategy for this simulation

is captured in the center column of Table 3. Specifically, we let lnyear be the log of

(2024-1980) to convey the notion of a contemporary application. We hold weight variables

ln size ratio and lnpop at their respective sample medians. Similarly, we also apply a

close-to-median setting for the surface cover variables pctdev through pctwet, while still

complying with the embedded adding-to-100 condition. (see variable definitions in Table

1). To ensure realism, settings for binary indicators and quality points are borrowed from

the Des Moines watershed application given in Moeltner et al. (2023).

Our main focus rests on the four continuous context-specific variables sub proportion,

ln ar agr, lnincome, and ln ar ratio.14 For each of these we vary values as shown in

14As discussed previously (Johnston et al., 2017), these variables capture key contextual dimensions when
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Table 4. Specifically, we capture the minimum, median, and maximum value represented

in the metadata, as given in the first, fourth, and last column of the table, respectively. We

then divide both the lower and upper 50 percentile range, respectively, into two intervals

of equal width, labeled as “med- -,” “med-,” “med+,” and “med++” in the table. The

complete factorial of these seven settings for each variable yields 2401 unique combinations.

We refer to this full factorial as our “full” scale simulation. We separately consider BT

predictions generated by the factorial of the median and two adjacent values. We label this

smaller set of 81 combinations our “center” simulation. Conversely, we separately bundle the

four outside settings yielding 256 BT scenarios, and call it the “fringe” simulation. Together,

the three simulations will illustrate how our models converge or differ in areas where data

mass is highest (“center”), sparse (“fringe”), and over the full range of observations (“full”).

Results are given in Table 5. Each block of rows represents one of our three simulations

(full, center, fringe). The first three columns give, respectively, the mean, minimum, and

maximum prediction of WTP, in 2019 dollars, over all underlying BT scenarios. As ex-

pected, results are much more convergent across models for our “center” simulation, with

means over scenarios ranging from $2.62 (LLF) to $7.65 (RF), and maxima in the $6-12

range. For the “full” simulation, we observe a two-threefold increase in means for the GL-

MRM, LWR, and RF, and a dramatic increase in maxima for the linear regression models,

exceeding $130 in both instances. These figures appear unrealistic given the small under-

lying quality change. In contrast, estimates for the LLF and LLF.cov remain of modest

magnitude ($5-6), with considerably lower maxima, especially for the LLF.cov ($21). A

similar trend relative to the “center” version is observed for the “fringe” simulation. It thus

appears that the linear forest models, especially the LLF.cov, are less prone to extreme

predictions in sparse / boundary ranges of the underlying data, compared to the generic

RF and the linear regressions. Hence, an assessment of construct validity (here, whether

the predicted value is consistent with theory and past findings (Bishop and Boyle, 2019))

seeking to predict WTP for water quality improvements. They characterize, respectively, the proportion of
waterbodies of same hydrologic type in the state or region compared to the waterbody that is subject to
the actual quality change, the (log of) the proportion of the improved area that falls under agricultural land
cover, (log of) household income, and the (log of) the ratio of the extent of the market for WTP estimation
(i.e. stakeholder population) and the area over which actual water quality improvements would occur.
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strongly supports the LLF models over the other alternatives.

For each scenario, we also computed 95% C.I.’s for the corresponding BT estimate.

Comparative statistics for the mean, minimum, and maximum of these intervals are shown

in the second triplet of columns of Table 5. We first note that, as expected, the “center”

simulation is associated with the tightest C.I. ranges for all models compared to the “full”

and “fringe” version. The table also shows that the LWR produces a noticeable reduction

in average interval range for all three simulations relative to the GL-MRM, as also observed

in Moeltner et al. (2023). However, intervals generated by all three forest models are by an

order of magnitude tighter than even the LWR constructs, remaining well in the single-digit

dollar range. The covariance-corrected LLF is again the best performer, with the smallest

mean C.I. range in all situations. This advantage is most pronounced at the fringe of the

data space, as is evident from the last row of the table.

The last portion of Table 5 shows basic correlation coefficients for scenario-specific BT

estimates across all models. As expected, the LWR is highly correlated with the GL-

MRM. Both regression models, in turn, exhibit positive correlations of non-trivial magnitude

with the LLF specifications. In contrast, the generic RF stands on its own, with much

reduced, but still positive correlation with all remaining specifications. We take this as yet

another indication that the uncorrected RF misses important linear / smooth signals in the

metadata.

Adding-Up comparison

To examine the AU properties of the LWR and our preferred forest specifications (LLF

and LLF.cov) relative to the GL-MRM, we adopt the Des Moines watershed settings from

Moeltner et al. (2023). These values are given in the last column of Table 3. For the actual

quality change, we consider three separate scenarios, each located at different segments of

the 100-point water quality ladder. As indicated in the table, the first scenario stipulates

a two-step improvement from q0 = 41 to q2 = 44 (as actually used in the Des Moines

application), via intermediary point q1 = 42.5. The second scenario operates with the

same quality steps, but starts at q0 = 61. Scenario three then adds another 20 quality

23



points, starting at q0 = 81. As discussed in Moeltner (2019) and Moeltner et al. (2023),

these seemingly modest changes of single-digit quality points are quite realistic, and often

reflect the upper practicable range of best management practices and / or water cleanup

regulation.15

Results are presented in Table 6, which gives WTP (in 2019 dollars) for each step-wise

and total change, respectively. While point predictions differ to some extent across models,

the AU condition is fully or approximately satisfied by all specifications and for all scenarios.

The linear forests perform especially well, with AU errors well below the 1-percent mark.

Evidently, the stipulated quality changes are small enough for the AU-conducive conditions

outlined in the previous section to hold, regardless of where along the 100-point ladder they

occur. As an aside, we also observe from the table that the span between the lower (“low”)

and upper (“high”) 95% C.I. interval for each prediction is by an order of magnitude tighter

for the LLF specifications compared to the linear regression models, mirroring the findings

from the BT simulation above. We examine uneven and larger quality steps in the online

appendix. AU-compliance within 1-2% error continues to hold for the LWR and LLF. Errors

for the LLF.cov range from six to 17%, confirming our conjecture that the AU error for

forest-based models may increase with step size and / or step imbalances. The additional

simulations based on uneven quality steps also allow for a cursory inspection of adherence

to scope. Scope is satisfied for all models and quality simulations.

Conclusion

In this study we introduce different versions of RFs to the MRM-BT literature, and con-

trast their performance with respect to predictive accuracy and efficiency with existing

best-practice approaches. We highlight key econometric differences and commonalities be-

tween forests and parametric regression models, and stress the interpretation of forests as

nonparametric estimators based on policy-adaptive neighborhood kernels. We also discuss

15For the LWR we drop weight settings two, three, seven, and eight (as captured in table 2) due to
egregiously large predictions. We employ the same MSE-based averaging across the remaining settings to
obtain the estimates captured in table 6.
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embedded utility-theoretic properties, and the structural conditions that need to hold for

these properties to be satisfied. Ours is among the first applications in applied economics

at large to put a novel variant of forests, LLFs, to the test in an empirical setting. Re-

sults overwhelmingly support these methods as an attractive and broadly applicable option

for environmental BT. For our MRM application of WTP for water quality improvements,

we find that forests, especially the LLF variants, bring vast gains in predictive fit and re-

ductions in variance over even state-of-the-art MRMs. They also satisfy utility-theoretic

properties on empirical grounds for small quality changes, as have been typical in recent

rulemaking. Overall, we conclude that the new approach has the potential to substantially

sharpen predictive inference for use in environmental regulation without sacrificing theoret-

ical properties. Our analytical framework building on forests is applicable to any regression

context where predictive performance is of central importance.

A logical next step would be to stress-test our forest-based approach with other meta-

data and BT contexts, such as related to wetland valuation, recreation demand, or topics in

health economics. We also note that while the primary focus of this study lies on prediction,

forests are also suitable to provide nonparametric inspection of the relative importance

of explanatory variables in the meta-data, e.g. via variable importance statistics, partial

dependence plots, or Shapley values (e.g. Greenwell, 2022). We leave a closer examination of

these RF features, and how they could possibly guide variable selection in a more structural

MRM, to future work.
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Table 2: Comparison of model fit

local
model combo dist wf ws regressions mse mape

GL-MRM - - - - - 62.584 124.141

LWR-1 C1 U B 188 143 21.752 78.686
LWR-2 C1 U B 170 143 20.280 76.544
LWR-3 C1 U T 170 143 19.066 73.100
LWR-4 C1 M T 188 143 25.330 84.792
LWR-5 C2 IV T 188 155 27.294 86.754
LWR-6 C2 M B 188 155 19.776 76.463
LWR-7 C3 U B 170 155 19.993 69.111
LWR-8 C3 U T 170 155 20.686 72.087
LWR-9 C3 IV T 188 155 29.690 75.619
LWR-10 C3 M T 188 155 29.552 79.545

RF - - - - - 6.503 69.018
LLF - - - - - 7.707 56.642

LLF.cov - - - - - 6.379 55.230

combo = set of weight variables (see text)
dist = distance function (U = unadjusted, IV = inverse variance, M =
Mahalanobis)
wf = weight function (G = Gaussian, B = Bi-square, T = Tri-cubic)
ws = window size
local regressions = identified locations for LWR
mse = Mean Squared Error (in 1000’s)
mape = Mean Absolute Percentage Error
GL-MRM = Globally-Linear MRM
LWR = Locally-Weighted MRM
RF = Random Forest
LLF = Local Linear Forest (with residual splitting)
LLF.cov = LLF with covariance-adjusted ridge penalty
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Table 3: Benefit Transfer simulation settings

variable BT simulation AU simulation

context-specific
lnyear log(2024-1980)* log(2024-1980)

lump sum 0 0
nonusers 0 0

sub proportion 0.00 to 1.00 0.166
census-S 0 0

census-MW 1 1
census-W 0 0
swim use 0 0
gamefish 0 0
ln ar agr -4.26 to -0.08 -0.239
lnincome 10.65 to 11.48 11.011
tax only 1 1
user cost 0 0
ln ar ratio -8.48 to 6.65 2.08

q0 41.00 41, 61, 81
q1 44.00 42.5, 62.5, 82.5
q2 - 44, 64, 84

weight variables

ln sz ratio 7.47 5.88
lnpop 13.99 17.65
pctdev 5.00 3.62
pctopen 45.00 82.66
pctfor 45.00 9.01
pctwet 5.00 2.13

methodological variables
thesis (averaged) (averaged)
volunt (averaged) (averaged)
nonrev (averaged) (averaged)

oneshotval (averaged) (averaged)
rum (averaged) (averaged)
ibi (averaged) (averaged)

BT = Benefit Transfer
AU = Adding-Up
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Table 4: Benefit Transfer simulation settings, details

fringe center fringe
variable min. med.– med.- median med.+ med.++ max.

sub proportion 0.00 0.04 0.08 0.12 0.41 0.71 1.00
ln ar agr -4.26 -3.33 -2.41 -1.48 -1.01 -0.55 -0.08
lnincome 10.65 10.74 10.83 10.92 11.11 11.29 11.48
ln ar ratio -8.48 -5.65 -2.83 0.00 2.22 4.43 6.65

min. (max.) = minimum (maximum) value in metadata
med–: min. + (1/3)*(median - min.)
med-: min. + (2/3)*(median - min.)
med+: median + (1/3)*(max. - median)
med++: median + (2/3)*(max. - median)
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