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Abstract

The material contained herein is supplementary to the paper named in the title.

The mechanics of a simple regression tree

A stylized example of a regression tree is given in figure A1, generated with R packages
rpart and tree diagram. Assume the outcome of interest is WTP (in dollars), and the
available features are context-specific variables, as used in our empirical application. As can
be seen in the top, or “root” node, the initial mean WTP equals $141, and, of course, applies
to 100% of the sample at this initial stage. The tree then decides that the largest gain in
predictive accuracy, as measured by MSE, is achieved by splitting the sample along the
binary indicator “fishing affected,” which takes a value of one if the proposed water quality
change enhances recreational fishing opportunities. Observations for which this condition
holds are sent down the right, or “yes” branch of the tree. As indicated by the corresponding
“child” node, mean WTP equals $294 for these cases, comprising 19% of the initial sample.
Furthermore, the tree finds no other feature and split point that could bring further gains
in fit for this segment. Thus, the node becomes a terminal “leaf,” as is evident from the
tree diagram. However, for the opposite segment of “fishing affected = 0” cases (81% of the
full sample), fit can be further improved by splitting along the binary indicator “payment
vehicle = tax.” In this case the right or “yes” branch refers to the “0” cases, as indicated by
the splitting label, and the left branch to the “1” cases. For the latter, this leads to another
terminal leaf, with average WTP of $72 and including 39% of the initial sample. For the
“yes” group (41% of the sample), two additional splits are implemented involving features
“log of population income” (with split point of 11), and a binary indicator for the location
of a source study in the southern U.S. census region. Once no further accuracy gains can be
obtained by more splitting, or leaf sizes reach a predetermined minimum (usually in the five
to 10 range), the tree is fully grown, and every single observation is allocated to a terminal
leaf.

The tree can now be used to generate predictions for a new sample point, by sending the
new observation along the branches corresponding to its feature values until it drops into
one of the terminal leaves. For example, a new point with “fishing affected” = 0, “payment
vehicle” = access fee (not a tax), “log income” = 10.2, and “south census” = 0 will end in
leaf 20, which also hosts 26% of the original or “training” sample. The predicted WTP for
the new point is then simply the mean WTP for that leaf, in this case $86.
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Interpretation of RF predictions as the solution to a weighted
regression

The result in the last line of equation (7) in the main text can also be interpreted as
the solution to a weighted OLS regression of ỹ on a constant, i.e. the sought prediction
ỹp. Specifically, letting Ã be a diagonal matrix featuring

√
αi (xp,X) as the ith diagonal

element, and A = Ã ∗ Ã as the corresponding diagonal matrix with αi (xp,X) as the ith

diagonal element, we can specify the regression model as

Ãỹ = Ãiỹp + ϵ,

where i is an n by 1 vector of ones. The OLS solution then emerges as

ˆ̃yp =
(
i′Ai

)−1
i′Aỹ =

1∑n
i=1 αi (.)

n∑
i=1

αi (.) ỹi =
n∑

i=1

αi (.) ỹi since

n∑
i=1

αi (.) = 1

The last condition can be easily derived as (dropping the functional relationship of αi with
the underlying data for ease of exposition):

n∑
i=1

αi =

n∑
i=1

1

B

B∑
b=1

I (xi ∈ Lb (xp))

|Lb (xp) |
=

1

B

B∑
b=1

n∑
i=1

I (xi ∈ Lb (xp))

|Lb (xp) |
=

1

B

B∑
b=1

nb

|Lb (xp) |
=

1

B
B = 1,

where nb denotes the number of observations that share a leaf with the policy point in
tree b. By definition, this value must be equal to the number of elements in that leaf, i.e.
|Lb (xp) |.

Check for optimal number of trees

For all three forest models (RF,LLF, LLF.cov) we examine how the out-of-bag Root MSE
(RMSE) changes with forest size, i.e. the number of underlying trees. Specifically, we
evaluate all forests for 250 to 4000 trees, in increments of 250. The standard forest (RF) is
run without any additional tuning (as is the default for LLF and LLF.cov), to allow for a
direct focus on the effect of forest size. Figure A2 shows that the RMSE stabilizes around
1000-1500 trees for all specifications. We are thus confident that our chosen forest size of
2000 is sufficient for all components of our analysis.
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Robustness check for tuner settings in linear forests

As mentioned in the main text, standard RFs allow for automatic tuning of key parameters,
such as the fraction of the data to be used to build a given tree (sample.fraction), the
number of explanatory variables to be considered at each split (mtry), and the minimum
node size (min.node.size). This automatic tuning feature is not (yet) available for lin-
ear forests with a penalized splitting rule, as used in our analysis. This implies that the
analyst needs to chose these tuning parameters “manually.” In our estimation, we adopt
the suggested default settings of sample.fraction = 0.5, mtry = k (number of available
explanatory variables) = 22, and min.node.size = 5.1 Table A1 shows model fit results, akin
to those presented in Table 2 of the main text, for different settings for these three primary
tuners. Specifically, we examine MSE and MAPE statistics for the full permutation of:
sample.fraction ∈ {, 0.4, 0.45, 0.5}, mtry ∈ {10, 15, 22}, and min.node.size ∈ {3, 5, 10}.
These settings are chosen to balance algorithmic restrictions (sample.fraction must not
exceed 0.5 for LLF-type forests), and typical bias-variance tradeoffs (smaller bias but larger
variance for smaller mtry and min.node.size settings).

Table A1 gives the result of these robustness checks. The second-to-last row, highlighted
in grey, captures the default setting used in our main analysis, and thus reproduces the
entries in Table 2 for LLF and LLF.cov in the main text. As is clear from the table,
the different tuner combinations lead to only minor changes in model fit, with default
settings producing fit statistics that are located towards the lower (= better) end of the
spectrum. We are thus confident that proceeding with default settings does not imply
sacrificing measurable gains in predictive accuracy.

Adding-Up examination for larger quality steps

We implement three additional AU scenarios featuring large and / or uneven quality steps.
Scenario one starts with a small step of 1.5 points from 41 to 42.5, followed by a large, 18.5-
point step from 42.5 to 61. Scenario two reverses this order, and scenario three proceeds
in two equal steps of ten points, starting again from a baseline of 41. Table A2 captures
corresponding BT predictions and AU errors. As can be seen from the table, the GL-MRM,
LWR, and LLF continue to exhibit negligible AU errors at or under one percent, while
errors for the LLF.cov increase from approximately six percent for the large-large scenario
to 17% for the small-large scenario. While a 17% error may still be acceptable in certain
policy contexts, this highlights the importance of examining AU-related performance of
forest models on a case-by-case basis in a given empirical application.

References for Online Appendix

Tibshirani, J., Athey, S., Sverdrup, E., Wager, S., 2024. The GRF Algorithm. Web site:
https://grf-labs.github.io/grf/REFERENCE.html, last accessed 2024-10-11.

1As explained on in the online reference guide to the GRF package, the actual number of variables chosen
for a given split is drawn from a Poisson distribution with parameter mtry (Tibshirani et al., 2024)
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Figure A1: Example of a regression tree

The top entry in each node and leaf shows the mean of the outcome variable, the bottom entry the corre-
sponding share of the sample.
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Figure A2: Check for sufficient forest size (number of underlying trees)
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Table A1: Robustness check for tuners in the linear forest models

tuning parameter LLF LLF.cov
s.frac mtry min.node mse mape mse mape

0.4 10 3 8.385 57.273 6.785 55.909
0.4 10 5 8.354 58.598 6.630 56.369
0.4 10 10 8.939 61.786 6.763 56.666
0.4 15 3 8.379 58.422 6.449 55.483
0.4 15 5 8.219 58.846 6.365 55.517
0.4 15 10 9.199 61.642 6.476 57.005
0.4 22 3 6.973 55.789 6.303 54.835
0.4 22 5 7.599 57.342 6.870 56.534
0.4 22 10 8.439 60.731 6.293 55.887
0.45 10 3 9.034 58.569 6.590 54.952
0.45 10 5 8.878 59.226 6.556 55.697
0.45 10 10 9.066 61.020 6.517 56.269
0.45 15 3 7.138 55.707 6.524 55.401
0.45 15 5 7.408 56.728 6.684 56.182
0.45 15 10 8.528 60.049 6.394 56.436
0.45 22 3 7.713 56.265 6.329 54.929
0.45 22 5 7.729 56.507 6.486 55.719
0.45 22 10 8.593 60.425 6.068 55.348
0.5 10 3 7.998 58.252 7.056 56.137
0.5 10 5 8.603 60.235 6.730 56.670
0.5 10 10 9.758 62.121 6.606 56.700
0.5 15 3 8.028 56.549 6.460 54.356
0.5 15 5 8.192 57.658 6.495 55.194
0.5 15 10 8.950 61.298 6.223 55.807
0.5 22 3 7.181 55.035 6.583 55.198
0.5 22 5 7.707 56.642 6.379 55.230
0.5 22 10 8.144 59.557 6.133 55.886

s.frac = fraction of data used to build each tree
mtry = number of variables considered for each split
min.node = minimum node size
mse = Mean Squared Error (in 1000’s)
mape = Mean Absolute Percentage Error
LLF = Local Linear Forest (with residual splitting)
LLF.cov = LLF with covariance-adjusted ridge penalty
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